Universidade Federal Fluminense Instituto de Geociências Departamento de Geologia e Geofísica Marinha Graduação em Geofísica

ANA PAULA OLIVEIRA CASTRO

ESTUDO DO COMPORTAMENTO ELÁSTICO APRESENTADO POR DIFERENTES TIPOS DE ROCHAS SEDIMENTARES

Niterói 2013

ANA PAULA OLIVEIRA CASTRO

ESTUDO DO COMPORTAMENTO ELÁSTICO APRESENTADO POR DIFERENTES TIPOS DE ROCHAS SEDIMENTARES

Monografia apresentada ao Curso de Graduação em Geofísica da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Bacharel em Geofísica.

Orientador: Dr. Guilherme Vasquez (Geofísico Petrobras) Co-orientadores: Prof .ª Dra. Eliane Alves (Professora UFF) Dr. Márcio José Morschbacher (Geofísico Petrobras)

> Niterói 2013

ANA PAULA OLIVEIRA CASTRO

ESTUDO DO COMPORTAMENTO ELÁSTICO APRESENTADO POR DIFERENTES TIPOS DE ROCHAS SEDIMENTARES

Monografia de conclusão de curso defendida e aprovada em 12 de agosto de 2013, pela comissão julgadora:

Dr.Guilherme Vasquez / PETROBRAS

Prof. Dr^a. Eliane Costa Alves / LAGEMAR (UFF)

Prof. Dr. Arthur Ayres / LAGEMAR (UFF)

Prof. Dr. Rogério Santos / LAGEMAR (UFF)

Niterói

2013

AGRADECIMENTOS

Agradeço a Deus por ter me dado força e serenidade para conseguir concluir este curso, apesar de todas as dificuldades. E por colocar pessoas especiais em meu caminho.

Agradeço ao meu orientador Guilherme Vasquez, por ser sempre tão prestativo, dedicado e disposto a discutir os resultados obtidos, e por ter me dado a oportunidade de estagiar no Laboratório de Física de Rochas do Cenpes. Ao meu co-orientador Márcio J. Morschbacher, pela disponibilidade, pela preocupação e pelos ensinamentos transmitidos. Tenho certeza que não poderia ter encontrado orientação melhor.

Faço também um agradecimento muito especial à toda a equipe do Laboratório de Física de Rochas do Cenpes, em especial aos colegas Tagore Ostape, Guilherme Sollo e Marcos Leão, pela paciência e pelo auxílio durante a realização dos ensaios de laboratório.

Agradeço ao meu marido pelo apoio e por compartilhar comigo do mesmo interesse pela ciência e do gosto pelos estudos. Aos meus pais, Anilton e Aracy, que fazem o possível para me proteger e me encorajar mesmo não estando aqui no Rio comigo, aos meus irmãos, Andréa e Adriano, por serem companheiros de todas as horas, e a minha sobrinha Maira por tornar a nossa vida em família muito mais feliz. Em especial, agradeço à minha madrinha Angélica, por acreditar em mim e nunca deixar de me dizer palavras de incentivo quando pensei em desistir. Amo vocês!

Agradeço à minha chefe, Sueli Apati, pela compreensão e suporte aos meus estudos. E aos colegas de trabalho, pelo incentivo e pelos momentos de descontração.

Agradeço a todos os professores do Lagemar, pelo auxílio na minha formação profissional. Em especial à minha co-orientadora, a professora Eliane Alves, por estar sempre à disposição, ser compreensiva e dedicada, e pela atenção dada a todos os graduandos. Aos funcionários do Instituto pela paciência e simpatia, em especial à secretaria Ana Paula por ser tão ágil e prestativa.

Quero ainda expressar meu sincero agradecimento aos colegas de curso, pela convivência e colaboração. Com um carinho muito especial, à Joana e à Denise, amigas que a UFF me deu para a vida toda. Sem a companhia de vocês tudo teria sido muito mais difícil. Muito obrigada!

RESUMO

O objetivo deste trabalho é fazer um estudo do comportamento elástico de diferentes tipos de rochas sedimentares provenientes de afloramentos da região Centro-Oeste dos Estados Unidos. Para tanto, foram realizadas, em laboratório, medidas de porosidade, densidade e de velocidades de propagação das ondas elásticas apresentadas por cada tipo de rocha estudada. No total foram analisadas 15 amostras de rochas sedimentares paleozoicas, entre arenito, calcário e dolomito. Sendo 5 amostras de arenito Berea da formação Bedford (Ohio), 5 amostras de calcário Indiana da formação Salem (Indiana) e 5 amostras de dolomito Silurian da formação Racine (Illinois). A parte experimental foi realizada no Laboratório de Física de Rochas do Cenpes (Petrobras). As medidas de porosidade e densidade foram realizadas utilizando-se um porosímetro à gás Hélio, e as medidas de velocidades de propagação das ondas foram determinadas medindo-se o tempo de trânsito de um pulso ultrassônico de alta frequência transmitido através das amostras. A partir dos resultados obtidos, foi possível observar as correlações existentes entre as propriedades petrofísicas das rochas e o seu comportamento sísmico, assim como foi possível comparar as velocidades medidas experimentalmente com as previsões feitas a partir de modelos teóricos, de modo a verificar a eficácia dos resultados obtidos a partir da teoria.

Palavras-chaves: propriedades elásticas, rochas sedimentares, petrofísica, velocidades compressionais e cisalhantes

ABSTRACT

The objective of this work is to study the elastic behavior of different types of sedimentary rocks from outcrops of the Midwest region of the United States. For that, measurements were made in laboratory of porosity, density and velocities of propagation of elastic waves presented by each rock type studied. In total 15 samples were analyzed from Paleozoic sedimentary rocks, including sandstone, limestone and dolomite. 5 samples of Berea sandstone formation Bedford (Ohio), 5 samples of Indiana limestone formation Salem (Indiana) and 5 samples of Silurian dolomite formation Racine (Illinois). The experimental part was carried out in the Laboratory of Physics of Rocks Cenpes (Petrobras). The porosity and density measurements were carried out using a porosimeter helium gas, and velocities of propagation of elastic waves were determined by measuring the transit time of an ultrasonic pulse high frequency transmitted through the of samples. From the results obtained, it was possible to observe the correlation between the petrophysical properties of rocks and its seismic behavior, as it was possible to compare the experimentally measured velocities with predictions from theoretical models, in order to verify the effectiveness of the results obtained from the theory.

Keywords: elastic properties, sedimentary rocks, petrophysics, compressional and shear velocities

SUMÁRIO

1. INTRODUÇÃO1
2. REVISÃO BIBLIOGRÁFICA
2.1. TEORIA DA ELASTICIDADE E PROPAGAÇÃO DE ONDAS ELÁSTICAS
2.3. FATORES QUE EXERCEM INFLUENCIA SOBRE O COMPORTAMENTO ELASTICO DAS ROCHAS
2.3.1. LITOLOGIA (MINERALOGIA)
2.3.2. POROSIDADE
2.3.3. SATURAÇÃO DA ROCHA15
2.3.4. PRESSÃO
3. AMOSTRAS ESTUDADAS
4. METODOLOGIA
4.1. MEDIDAS PROPRIEDADES ELÁSTICAS
4.1.1. PROCEDIMENTO PARA MEDIDAS DA VELOCIDADE
5. RESULTADOS
5.1. RESULTADOS DAS MEDIDAS DE ONDA P, ONDA S1 E ONDA S2
5.1.1. RELAÇÃO ENTRE A VELOCIDADE DE PROPAGAÇÃO DA ONDA S1 COM A ONDA
S2
5.1.2. VARIAÇÃO DAS VELOCIDADES DAS ONDAS ELÁSTICAS COM A VARIAÇÃO DA
PRESSÃO
5.1.3. RELAÇÃO $V_P/V_S \ge V_P$
5.1.4. RELAÇÃO $V_P X V_S$
5.1.5. RELAÇÃO DA VELOCIDADE DE PROPAGAÇÃO DA ONDA P COM A
POROSIDADE
5.1.6. RELAÇÃO DA VELOCIDADE DE PROPAGAÇÃO DAS ONDAS ELÁSTICAS COM A
SUBSTITUIÇÃO DE FLUIDOS
6. CONCLUSÃO41
7. REFERÊNCIAS BIBLIOGRÁFICAS42
APÊNDICE A – PROGRAMA MATLAB PARA GERAR A FORMA DE ONDA46
C1.1- ROTINA PARA IMPORTAR CSV AGILENT
C1.2- ROTINA PARA INTERPOLAR DADOS
APÊNDICE B - RESULTADOS DAS MEDIDAS DO TEMPO DE TRÂNSITO DO PULSO
ELÉTRICO
APÊNDICE B – VELOCIDADES CALCULADAS A PARTIR DOS DADOS EXPERIMENTAIS
APÊNDICE C - RESULTADOS DAS VELOCIDADES CALCULADAS PELA EQUAÇÃO DE
GASMANN

LISTA DE FIGURAS

Figura 1: Curva tensão-deformação típica para um corpo sólido. Adaptado de Kearey et al.(2009)
Figura 2: Componentes de esforço em um pequeno volume. O esforço em cada uma de suas faces pode ser representado por seus componentes nas direções x, y e z. Fonte: Abreu (2010)4
Figura 3: Extensão uniaxial. Adaptado de Kearey (2009)5
Figura 4: Compressão axial. Adaptado de Kearey et al. (2009)
Figura 5: Compressão hidrostática. Adaptado de Kearey et al. (2009)6
Figura 6: Cisalhamento simples. Adaptado de Kearey el al. (2009)7
Figura 7: Deformações elásticas e movimentos de partículas associadas à passagem de ondas de corpo: Ondas P e (B) Ondas S. Fonte: www.obsis.unb.br9
Figura 8: Vagarosidades das ondas compressionais e cisalhantes para várias litologias. As linhas contínuas representam a razão VP/VS. Modificado de Pickett (1963)11
Figura 9: Razões de <i>Poisson</i> médias para diferentes litologias. Notar que existem regiões de superposição. Fonte: Bourbié et al (1987)
Figura 10: Ilustração da porosidade. Fonte: Adaptado de Schon (1996)
Figura 11: Gráfico representativo da variação da velocidade elástica com a pressão. A variação de pressão que provoca este valor constante assintótico da velocidade está relacionada à distribuição do tipo de poros da rocha no que se refere à sua forma ou razão de achatamento. Fonte: Adaptado de Dillon (2001)
Figura 12: Preparação das amostras para os ensaios
Figura 13: Foto de dois plugues das amostras de arenito Berea
Figura 14: Foto do sistema de medida de velocidades V _P , V _{S1} e V _{S2} 22
Figura 15: Esquema ilustrativo da parte hidráulica do sistema de medidas de velocidades elásticas em amostras de rocha. Fonte: Adaptado de Abreu (2010)
Figura 16: Esquema ilustrativo da parte eletrônica do sistema de medidas de velocidades elásticas em amostras de rocha. Fonte: Adaptado de Abreu (2010)
Figura 17: Detalhes dos transdutores do cabeçote

Figura 18: Ilustração da propagação das ondas elástica. As ondas P acarretam perturbações na mesma direção de propagação da onda (eixo z). As ondas S provocam perturbações perpendiculares (eixos x e y) à direção de propagação. Adaptado de Archilha et al. (2012).......25

Figura 23: Relação entre a velocidade de propagação das ondas P, S1 e S2 com a variação da pressão para uma amostra de Arenito Berea (BRS001), uma amostra do Calcário Indiana (IL012) e uma amostra do Dolomito Siluriano (SD006). A cor azul representa as velocidades da onda P, a cor verde a velocidade da onda S₁ e a cor laranja a velocidade da onda S₂. Os pontos marcados por quadrados representam a medida da velocidade com o aumento da pressão e os pontos marcados por círculos representam a medida da velocidade com o decréscimo da pressão.**33**

Figura 24: Diagrama das relações Vp/Vs X Vp obtidas para as amostras de Arenito Berea (círculos amarelos), Calcário Indiana(triângulos azuis) e Dolomito Silurian (quadrados verdes).**35**

Figura 27: Velocidades das amostras BRS002 (Arenito Berea), IL013 (Carbonato Indiana) SD006 (Dolomito Silurian) a seco e saturadas com água, comparadas à previsão de Gassmann .39

LISTA DE TABELAS

Tabela 1: Relação entre as constantes elásticas de material isotrópico (Mavko et al., 1998) 7
Tabela 2: Valores de densidades médias e alguns módulos elásticos (Bulk= compressão e Shear= cisalhamento) para alguns tipos de minerais (modificado de Bourbié et al., 1987; Raymer et al., 1980)
Tabela 3: Informações sobre as amostras. Fontes: Archilla et al., 2012; Churcher et al.,1991; obsis. unb, isgs.illinois e US Geological Survey
Tabela 4: Dados de Porosidade e Massa Específica obtidos no laboratório do Cenpes 27
Tabela 5: Tempo do sistema
Tabela 6: Tempo de propagação das ondas P, S1 e S2 e respectivas velocidades calculadas para a amostra BRS001
Tabela 7: Tabela com os dados de ondas cisalhantes medidos a pressão de 5000 psi.Apenas três pontos apresentam grau de anisotropia acima de 2% e podem serconsiderados "outliers"
Tabela 8: Relação VpxVs obtidas para o grupo de amostras em estudo à pressão de 5000 psi
Tabela 9: Relação Vp com a porosidade obtida para o grupo de amostras em estudo àpressão de 5000 psi38
Tabela 10: Resultados de Vp e Vs obtidos experimentalmente para as rochas saturadas ecalculados pela equação de Gassmann40

1. INTRODUÇÃO

Os estudos relacionados ao comportamento elástico de rochas têm seguido uma tendência crescente nas últimas décadas, dada a importância destas pesquisas para o entendimento e interpretação de dados sísmicos. Atualmente, o método sísmico consiste em uma ferramenta fundamental para a indústria de exploração e produção de hidrocarbonetos e pode-se dizer que é a técnica mais largamente utilizada para a exploração e desenvolvimento de reservatórios. Neste sentido, o estabelecimento de relações entre as propriedades físicas das rochas e as suas assinaturas sísmicas, a partir de medidas feitas em laboratório, é determinante para o aprimoramento do método sísmico, possibilitando a realização de interpretações quantitativas.

Diversas aplicações práticas da física das rochas podem ser citadas para fundamentar a relevância do estudo destas propriedades, tais como (Dillon & Vasquez, 2001; Morschbacher et al., 2010):

- Verificação da qualidade e da calibração de perfis sônicos, através da comparação de dados de laboratório com dados de perfil.

 Estimativa das velocidades das ondas sísmicas em rochas saturadas com diferentes fluidos (importante para simulação das respostas sísmicas e para a construção de cenários exploratórios e viabilidade e interpretação para dados de monitoramento sísmico);

- Verificação da variação das propriedades sísmicas com a variação da pressão, visto que *in situ* ocorrem variações da tensão efetiva à qual as rochas são submetidas;

Com isto, o objetivo deste trabalho é fazer o estudo das propriedades elásticas em diferentes tipos de rochas sedimentares em laboratório e estabelecer relações entre estas propriedades (mais especificamente, a velocidade de propagação das ondas compressionais e cisalhantes) com a porosidade, com a variação da pressão e com o tipo de litologia. Para tanto, foram utilizadas 15 amostras de rochas sedimentares, sendo 5 amostras de arenito Berea, 5 amostras de carbonato Indiana e 5 amostras de dolomito Silurian.

Para uma melhor compreensão, inicialmente, será realizada uma breve revisão dos principais conceitos fundamentais acerca das propriedades elásticas das rochas

(disponível ao longo do capítulo 2). O capítulo 3 traz importantes informações geológicas sobre as amostras em estudo. A tabela 3, apresentada no referido capítulo, indica o local de origem das amostras, a formação e a idade geológica, assim como apresenta a identificação adotada para cada amostra neste estudo. Em seguida, será realizada uma descrição das metodologias utilizadas para realização das medidas experimentais, com enfoque maior para as medidas de velocidades de propagação das ondas compressionais e cisalhantes (capítulo 4). E por fim, será realizada, no capítulo 5, a discussão dos resultados, seguida da conclusão (capítulo 6).

2. REVISÃO BIBLIOGRÁFICA

2.1. TEORIA DA ELASTICIDADE E PROPAGAÇÃO DE ONDAS ELÁSTICAS

O entendimento da Teoria da Elasticidade é fundamental para a compreensão do fenômeno de propagação de ondas elásticas. Sendo assim, nesta seção será feita uma revisão dos principais conceitos desta teoria, tais como definição dos módulos elásticos e a relação entre estas constantes e as velocidades de propagação das ondas compressionais (V_p) e cisalhantes (V_s) .

As propriedades elásticas dos materiais são definidas por determinadas constantes ou módulos elásticos. Estes módulos, por sua vez, dependem da relação entre a tensão aplicada ao material e a deformação produzida.

Quando um corpo é submetido à tensão (*stress*), este sofre uma mudança de forma e/ou de volume, conhecida como deformação (*strain*). Até certo valor máximo de tensão (denominado limite elástico), a deformação é diretamente proporcional ao esforço aplicado e é reversível, isto é, quando suspensa a tensão o corpo volta a sua forma original. Quando o limite elástico é ultrapassado, a deformação torna-se não linear e parcialmente irreversível, e é conhecida como deformação plástica ou dúctil. Se ainda houver um aumento da tensão, ocorre a fratura do corpo. A figura 1 representa uma curva tensão-deformação típica para um corpo sólido (Kearey et al., 2009).

Deformação

Figura 1: Curva tensão-deformação típica para um corpo sólido. Adaptado de Kearey et al.(2009)

A relação entre tensão e deformação, em um meio elástico, é dada pela Lei de Hooke. Considerando um pequeno elemento de volume de um corpo isotrópico (Figura 2), as relações entre tensão e deformação podem ser dadas pelo conjunto de equações 1 e 2 (Abreu, 2010):

Figura 2: Componentes de esforço em um pequeno volume. O esforço em cada uma de suas faces pode ser representado por seus componentes nas direções x, y e z. Fonte: Abreu (2010)

$$\sigma_{ii} = \lambda \Delta + 2\mu \varepsilon_{ii}, \qquad i=x,y,z \qquad (1)$$

$$\sigma_{ij} = \mu \mathcal{E}_{ij}, \qquad i,j=x,y,z \, e \, i \neq j \qquad (2)$$

onde σ_{ii} é o esforço normal, σ_{ij} é tensão de cisalhamento, ε_{ii} é a deformação normal, ε_{ij} é a deformação de cisalhamento e Δ é a dilatação volumétrica. As duas constantes elásticas (λ, μ) são conhecidas como constantes de Lamé e definem o comportamento de sólidos isotrópicos. O μ também é conhecido como módulo de cisalhamento.

Além das constantes de *Lamé*, outras constantes também são utilizadas para descrever o comportamento dos sólidos. São elas: módulo de *Young*, módulo de compressão (*Bulk*) e razão de *Poisson*.

O coeficiente de proporcionalidade entre a tensão e a deformação uniaxial no intervalo de deformação elástica é chamado de módulo de *Young* (E). Este módulo pode ser entendido como uma medida da oposição da rocha à deformação linear causada pela tensão aplicada. É dado pela razão entre a tensão aplicada e a deformação associada (Figura 3). A tensão, por sua vez, é obtida pela divisão do valor da carga aplicada pela

área do corpo, e a deformação, pela divisão do deslocamento axial pelo comprimento do corpo (Kearey et al., 2009; Soares, 1992):

Figura 3: Extensão uniaxial. Adaptado de Kearey (2009)

$$E = \frac{F/A}{\Delta L/L} \tag{3}$$

sendo L = comprimento e A= seção transversal

A aplicação de tensão distensiva sobre uma amostra de rocha em uma dada direção provoca expansão da amostra na direção da tensão aplicada e contração nas direções perpendiculares. Se a tensão aplicada for compressiva, ocorre uma contração da amostra na direção da tensão aplicada e expansão nas direções perpendiculares (Figura 4). A razão entre as deformações perpendicular e paralela à tensão é chamada de *Poisson* (*v*). A razão de *Poisson* é uma constante elástica definida pela relação entre a deformação transversal (Δ W/W) e longitudinal (Δ L/L) sofrida por um corpo quando aplicada uma tensão unidirecional, compressiva ou distensiva (Soares, 1992):

Figura 4: Compressão axial. Adaptado de Kearey et al. (2009)

$$\nu = \frac{\Delta W/W}{\Delta L/L} \tag{4}$$

Além do módulo de *Young* e da razão de *Poisson*, há ainda o módulo de compressão (K), também chamado de módulo de volume ou módulo *bulk*. Este módulo expressa a razão entre a tensão e a deformação no caso da aplicação de uma pressão hidrostática simples (P) a um elemento cúbico (Figura 5), que produz uma variação de volume (Δ V), em relação ao volume original (V) (Kearey et al., 2009; Soares, 1992):

Figura 5: Compressão hidrostática. Adaptado de Kearey et al. (2009)

Em outras palavras, o módulo K está relacionado à tensão volumétrica P necessária para provocar a deformação volumétrica ($\Delta V/V$).

$$K = \frac{P}{\Delta V/V} \tag{5}$$

De modo similar, o módulo de rigidez ou cisalhamento (G ou μ) é definido como a razão entre a tensão de cisalhamento e a deformação de cisalhamento. Um corpo que está submetido a uma tensão de cisalhamento (τ) sofre deformação angular (θ), sem variação de volume (Figura 6). O módulo de cisalhamento é então uma medida da oposição a deformação angular provocada pela tensão cisalhante (Kearey et al., 2009; Soares, 1992):

Figura 6: Cisalhamento simples. Adaptado de Kearey el al. (2009)

O módulo de cisalhamento, μ , pode ser calculado pela tensão de cisalhamento dividida pela deformação de cisalhamento (dada pela tangente do ângulo θ):

$$\mu = \frac{\tau}{\tan \theta} \tag{6}$$

Admitindo situação de isotropia, é possível estabelecer algumas relações entre as constantes elásticas (Tabela 1). Embora na prática a maioria das rochas apresente condição de anisotropia, a suposição de isotropia geralmente fornece informações razoáveis sobre resultados reais (Abreu, 2010).

Tabela 1: Relação entre as constantes elásticas de material isotrópico (Mavko et al., 1998)

K	Е	λ	v	μ
$\lambda + \frac{2\mu}{3}$	$\mu \frac{3\lambda + 2\mu}{\lambda + \mu}$	· · · · ·	$\frac{\lambda}{2(\lambda+\mu)}$	¥
: <u> </u>	$9K\frac{K-\lambda}{3K-\lambda}$. <u></u>	$\frac{\lambda}{3K-\lambda}$	$\frac{3(K-\lambda)}{2}$
	$\frac{9K\mu}{3K+\mu}$	$K - \frac{2\mu}{3}$	$\frac{3K-2\mu}{2(3K+\mu)}$	
$\frac{3E\mu}{3(3\mu-E)}$		$\mu \frac{E-2\mu}{(3\mu-E)}$	$\frac{E}{2\mu}$ -1	
13 		$\frac{3K}{9K-E}$	$\frac{3K-E}{6K}$	$\frac{3KE}{9K-E}$
$\lambda \frac{1+\nu}{3\nu}$	$\lambda \frac{(1+\nu)(1-2\nu)}{\nu}$		s3	$\lambda \frac{1-2\nu}{2\nu}$
$\mu \frac{2(1+\nu)}{3(1-2\nu)}$	$2\mu(1+\nu)$	$\mu \frac{2\nu}{2-2\nu}$		
	3K(1-2v)	$3K \frac{v}{1+v}$	s s	$3K\frac{1-2\nu}{2(1+\mu)}$
$\frac{E}{3(1-2\nu)}$		$\frac{E\nu}{(1+\nu)(1-2\nu)}$	r <u></u>	$\frac{E}{2(1+\nu)}$

A Tabela 2 apresenta os valores típicos dos módulos elásticos e densidades médias para alguns tipos de minerais. Alguns desses valores tabelados para os minerais serão utilizados para calcular os valores de módulo de compressão para as rochas saturadas com água, em acordo com as equações que serão apresentadas no item 2.3.3.

Mineral	Densidade (g/cm³)	Módulo Bulk K (GPa)	Módulo Shear (GPa)
Quartzo	2,65	36,6	45
Feldspato	2,63	75,6	25,6
Halita	2,16	24,8	14,9
Calcita	2,71	76,8	32
Dolomita	2,87	94,9	45
Gipsita	2,35	45,63	26,4
Anidrita	2,98	56,1	29,1
Hematita	5,24	97	92
Olivina	3.22	128.5	79.4

 Tabela 2: Valores de densidades médias e alguns módulos elásticos (Bulk= compressão e Shear= cisalhamento) para alguns tipos de minerais (modificado de Bourbié et al., 1987; Raymer et al., 1980)

2.2. TIPOS DE ONDAS SÍSMICAS

Ondas sísmicas são pacotes de energia de deformação elástica que se propagam a partir de uma fonte sísmica. A velocidade de propagação dessas ondas é determinada por características do meio material através do qual elas se propagam, como densidade e os módulos elásticos estudados no capítulo anterior. Há dois grupos de ondas sísmicas: as ondas de corpo (compressionais e de cisalhamento) e as ondas superficiais (ondas Rayleigh e ondas Love) (Kearey et al., 2009). Para este trabalho, será dada atenção apenas para as ondas de corpo.

As ondas de corpo podem ser de dois tipos: As ondas compressionais ou ondas longitudinais, também conhecidas como ondas primárias ou ondas P; e as ondas de cisalhamento ou ondas transversais, também conhecidas por ondas secundárias ou ondas S.

As ondas P são chamadas primárias porque são as primeiras que podem ser observadas em um sismograma. Este tipo de onda provoca uma deformação uniaxial na direção de propagação da onda, ou seja, provoca a compressão e a expansão da rocha (Figura 7A). Já as ondas S apresentam velocidades menores que as ondas P e, por isso, seu registro em um sismograma ocorre sempre algum tempo depois do registro da onda P. Neste tipo de onda as partículas vibram em uma direção perpendicular à de propagação da onda (Figura 7B) (Kearey et al., 2009; Santos, 2012).

Figura 7: Deformações elásticas e movimentos de partículas associadas à passagem de ondas de corpo: Ondas P e (B) Ondas S. Fonte: www.obsis.unb.br

As velocidades de propagação das ondas podem ser definidas em função das constantes elásticas do meio. A velocidade de ondas P em um meio homogêneo isotrópico é dada por:

$$V_{P} = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}} = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$
(7)

onde K é o módulo volumétrico, μ é o módulo de cisalhamento, ρ é a densidade e λ é o primeiro parâmetro de *Lamé*.

A velocidade de ondas S em um meio homogêneo isotrópico é dada por:

$$V_{S} = \sqrt{\frac{\mu}{\rho}}$$
(8)

2.3. FATORES QUE EXERCEM INFLUÊNCIA SOBRE O COMPORTAMENTO ELÁSTICO DAS ROCHAS

Diversos fatores exercem influência sobre o comportamento elástico das rochas, tais como tipo de litologia, porosidade, permeabilidade, tipo de fluido saturante, pressão de confinamento, geometria e microestrutura dos grãos. Alguns destes fatores serão abordados neste trabalho.

2.3.1. Litologia (Mineralogia)

A composição mineralógica das rochas afeta diretamente o comportamento elástico das mesmas. Isto porque, os módulos de incompressibilidade e cisalhamento dependem da composição da matriz da rocha e isso influencia a velocidade da rocha como um todo. Além da matriz da rocha, há ainda o efeito proveniente do tipo de cimentação existente, que pode conferir menor ou maior rigidez à rocha a depender da sua composição.

Um dos primeiros trabalhos realizados com o objetivo de discriminar a litologia das rochas baseado na razão entre as velocidades de propagação das ondas acústicas foi o de Pickett (1963). Realizando estudo em rochas consolidadas de diferentes porosidades, Pickett concluiu que arenitos limpos apresentam razão VP/Vs entre 1,6 e 1,7, enquanto calcários apresentam o valor 1,9 e dolomitas 1,8 (Pickett, 1963). A razão VP/Vs é um melhor indicador litológico, pois independe da densidade da rocha, enquanto que analisando apenas a velocidade da onda P, o indicador de litologia poderia ser considerado ambíguo, já que Vp é função de três propriedades separadas da rocha (Kearey et al.,2009). A Figura 8 ilustra a discriminação de litologia proposta por Picket (1963).

Vagarosidade da onda S (µs/pé)

Figura 8: Vagarosidades das ondas compressionais e cisalhantes para várias litologias. As linhas contínuas representam a razão VP/VS. Modificado de Pickett (1963)

Castagna et al. (1985) também procuraram estabelecer relações entre as velocidades elásticas para diferentes litologias e obtiveram as seguintes relações para rochas saturadas com água (Castagna et al., 1985; Gassmann, 1951):

para arennos	(9)
para calcários	(10)
para dolomitos	(11)
para folhelhos	(12)
F	para arennos para calcários para dolomitos para folhelhos

onde VP e Vs estão em km/s.

A razão de Poisson também tem sido utilizada como indicadora de litologia, pois apresenta uma relação simples entre o módulo de compressão e o módulo de cisalhamento (Equação 9), que, por sua vez, pode ser escrito em função das velocidades V_P/V_S (Bourbié et al., 1987; Takahashi et al., 2000):

$$v = \frac{K/\mu - 2/3}{2K/\mu + 2/3} = \frac{3K - 2\mu}{2(3K + \mu)}$$
(13)

Como,
$$V_p = \sqrt{\frac{K + 4/3\mu}{\rho}} \longrightarrow K = V_p^2 \rho - 4/3\mu$$
 e $V_s = \sqrt{\frac{\mu}{\rho}} \longrightarrow \mu = V_s^2 \rho$

tem-se:

$$v = \frac{(V_P^2 - 2V_S^2)}{2(V_P^2 - V_S^2)}$$
(14)

Escrevendo de outra maneira:

$$\nu = \frac{0.5 \left(\frac{V_P}{V_S}\right)^2 - 1}{\left(\frac{V_P}{V_S}\right)^2 - 1} \qquad \text{ou} \qquad \frac{V_P}{V_S} = \sqrt{\frac{2(1 - \nu)}{1 - 2\nu}} \tag{15}$$

Em geral, valores altos de v (>0,35) correspondem a rochas inconsolidadas. Rochas compactas possuem razão de Poisson entre 0,2 e 0,35, enquanto areias com gás tem v muito pequeno (em torno de 0,1) e areias com água apresentam v em torno de 0,4. A Figura 9 ilustra as razões de Poisson médias para diferentes litologias.

Figura 9: Razões de *Poisson* médias para diferentes litologias. Notar que existem regiões de superposição. Fonte: Bourbié et al (1987)

2.3.2. Porosidade

A Porosidade (ϕ) de uma rocha é definida como sendo a razão entre o volume de espaços porosos (Vporos) existentes na rocha pelo seu volume total (V) (Schon, 1996):

$$\phi = \frac{V_{poros}}{V} = \frac{1 - V_m}{V} \tag{16}$$

Onde V_m representa o volume da matriz de sólidos. A Figura 10 ilustra a relação entre a matriz rochosa, os espaços porosos e a porosidade. Nota-se que a porosidade é uma grandeza expressa em termos de porcentagem (0 – 100%) ou em termos de fração decimal (0 a 1).

Figura 10: Ilustração da porosidade. Fonte: Adaptado de Schon (1996)

Medidas experimentais têm mostrado frequentemente que relações empíricas relativamente simples podem ser usadas para descrever propriedades de rochas sedimentares (Arns, 2002). Medidas feitas por Wyllie et al. (1956) mostram que existe uma relação monotônica entre a velocidade compressional e a porosidade em rochas sedimentares, quando estas possuem mineralogia relativamente uniforme, estão saturadas e sob uma pressão efetiva relativamente alta (Arns, 2002; Wyllie et al., 1956). A equação a seguir apresenta essa relação:

$$\frac{1}{V_{P}} = \frac{\phi}{V_{F}} - \frac{1 - \phi}{V_{PG}}$$
(17)

onde: V_P = Velocidade compressional na rocha V_F = Velocidade do fluido saturante V_{PG} = Velocidade compressional da matriz sólida ϕ = Porosidade

Esta expressão é usualmente chamada de equação do tempo médio, pois indica que o tempo total de trânsito é a soma do tempo de trânsito no mineral mais o tempo de trânsito no fluido de poro.

Raymer et al. (1980), baseados em observações de um grande número de dados (principalmente de perfis), sugeriram um refinamento da equação de Wyllie. A proposta consiste de uma fórmula para porosidades abaixo de 37% (equação 18), caso em que os grãos não apresentam coesão, outra fórmula para porosidades acima de 47% (equação 19), caso em que a rocha é considerada uma suspensão sólido-fluido, e uma terceira fórmula para valores de porosidade entre 37% e 47% (equação 20). As chamadas relações de Raymer-Hunt-Gardner são (Raymer et al., 1980):

$$\phi < 37\% \qquad V_P = (1 - \phi)^2 V_{PG} + \phi V_F \qquad (18)$$

$$\phi > 47\% \qquad V_P = \left[\rho \left(\frac{\phi}{\rho_F V_F^2} + \frac{1 - \phi}{\rho_G V_{PG}^2} \right) \right]^{-\frac{1}{2}} \qquad (19)$$

$$47\% > \phi > 37\% \qquad V_P = \left[\frac{0.47 - \phi}{0.1V_{P37}} + \frac{\phi - 0.37}{0.1V_{P47}} \right]^{-1} \qquad (20)$$

Onde: ρ_G = densidade da matriz (grãos)

 ρ_F = densidade do fluido V_{P37} = velocidade para as porosidades de 37%

 V_{P47} = velocidade para as porosidades de 47%

14

Para as ondas cisalhantes, utiliza-se:

$$V_{S} = \left[\frac{1-\phi}{V_{SG}} + \frac{\phi}{871,4}\right]^{-1}$$
(21)

onde Vsg é o valor da velocidade cisalhante na parte sólida.

Esta fórmula é utilizada para porosidades até 37%, a partir desta porosidade anula-se o valor de *VsG* devido à perda de coesão dos grãos, tratando-se assim de uma suspensão.

Depreende-se destas fórmulas que, de um modo geral, um incremento na porosidade corresponde ao decréscimo na velocidade de propagação da onda pela rocha (Rafavich et al., 1984).

2.3.3. SATURAÇÃO DA ROCHA

Um dos problemas mais relevantes ao estudo de física das rochas é a estimativa das velocidades sísmicas em rochas saturadas com fluidos, o chamado problema de substituição de fluidos (Mavko et al., 1998). Isto porque, o tipo de fluido (gás, óleo ou água) presente nos poros influencia de forma diferente as propriedades elásticas de uma rocha. Geralmente, quando uma rocha está sob o efeito de uma compressão, tem-se um aumento da pressão de poros, a qual resiste à compressão e, portanto enrijece a rocha (Smith et al., 2003).

A técnica de substituição de fluido mais utilizada é baseada na teoria de Biot-Gassmann, pois permite a simulação do comportamento elástico de rochas sob diferentes condições de saturação (Smith et al., 2003). Gasmann (1951) propôs uma equação para o cálculo do módulo de compressão (K_{SAT}) de um meio poroso saturado, a partir de parâmetros conhecidos da rocha seca, como módulos de compressão da rocha seca e da matriz da rocha, do fluido e a porosidade do meio. Desse modo, a teoria de Gassmann

prevê o aumento resultante no módulo de compressão efetivo, K_{SAT} , de uma rocha saturada através da seguinte equação (Gassmann, 1951) apud (Abreu, 2010):

$$K_{SAT} = K_{SECA} + \frac{\left(1 - \frac{K_{SECA}}{K_G}\right)^2}{\frac{\phi}{K_F} + \frac{(1 - \phi)}{K_G} + \frac{K_{SECA}}{K_G^2}}$$
(22)

Onde:

 K_{SAT} – Módulo de compressão da rocha saturada

 K_{SECA} – Módulo de compressão da rocha seca (arcabouço da rocha: rocha com poros vazios)

 K_F – Módulo de compressão do fluido

 K_G – Módulo de compressão da matriz sólida (consiste nos minerais constituintes)

 ϕ – Porosidade do meio

Os parâmetros de rocha seca necessários para o cálculo do módulo de compressão saturados podem ser obtidos por meio de medidas de velocidades de rochas secas em laboratório ou pela avaliação das formações. Neste trabalho, estes dados foram obtidos realizando os ensaios de laboratório que serão descritos no Capítulo 4.

Conforme visto na seção 2.2, as velocidades das ondas sísmicas são dadas pelas Equações 7 e 8. Logo, as velocidades previstas por Gassmann são dadas por esta equação, só que utilizando o módulo de compressão da rocha saturada - K_{SAT} , a densidade da rocha saturada - ρ_{SAT} e o módulo de cisalhamento - μ_{SAT} .

Como o módulo de cisalhamento da rocha não se altera com a saturação, tem-se:

$$\mu_{SAT} = \mu_{SECA} \tag{23}$$

A densidade da rocha saturada é dada simplesmente por:

$$\rho_{SAT} = \rho_{SECA} + \phi \rho_F = (1 - \phi) \rho_G + \phi \rho_F \tag{24}$$

Onde:

 ρ_{SAT} - Densidade da rocha saturada

 ρ_{SECA} - Densidade da rocha seca

P - Densidade do fluido

 ρ_G – Densidade do mineral

 ϕ – Porosidade do meio

Sendo assim, as velocidades previstas por Gassmann são então dadas por:

$$V_{P,SAT} = \sqrt{\frac{K_{SAT} + \frac{4}{3}\mu}{\rho_{SAT}}}$$
(25)

$$V_{S,SAT} = \sqrt{\frac{\mu}{\rho_{SAT}}}$$
(26)

A aplicação da equação de Gassmann exige que alguns pressupostos sejam assumidos (Dillon & Vasquez, 2000):

1) A rocha ou meio poroso (tanto matriz como arcabouço) deve ser macroscopicamente homogêneo e isotrópico, com módulos de compressão e cisalhamento dos constituintes minerais constantes.

2) Todos os poros precisam estar interconectados;

3) Os poros devem ser preenchidos por fluido sem atrito (líquido ou gás), isto é, com viscosidade baixa ou desprezível.

4) O sistema sólido-fluido estudado deve ser fechado (não-drenado),

5) O movimento relativo entre fluido e sólido deve ser desprezível quando comparado com o movimento da rocha em si quando esta é excitada por uma onda. Isto exige que a frequência da onda seja baixa. Frequências maiores provocam o movimento relativo entre matriz sólida e fluido intraporos, de modo que a onda será dispersiva.

6) O fluido intraporos não deve interagir com o sólido, pois isto pode alterar a rigidez da rocha ao cisalhamento.

É fato que nem sempre essas hipóteses são atendidas por completo, entretanto, um estudo mais detalhado de trabalhos com dados de laboratório e de perfil mostram que, apesar destas suposições, os resultados obtidos com a aplicação desta teoria são perfeitamente aceitáveis. É preciso ter uma atenção maior apenas nos casos de fluidos muito viscosos e altas frequências (Vasquez et al., 2007).

2.3.4. PRESSÃO

A velocidade compressional e a velocidade cisalhante aumentam com o aumento da pressão efetiva (diferença entre a pressão confinante e a pressão de poros), devido ao processo de fechamento das microfissuras presentes na rocha. Em rochas sedimentares, as velocidades tendem a um valor assintótico para altas pressões, conforme Figura 11 (Abreu, 2010).

Curva Velocidade x Pressão Efetiva

Pressão Efetiva

Figura 11: Gráfico representativo da variação da velocidade elástica com a pressão. A variação de pressão que provoca este valor constante assintótico da velocidade está relacionada à distribuição do tipo de poros da rocha no que se refere à sua forma ou razão de achatamento. Fonte: Adaptado de Dillon (2001)

A variação das velocidades de propagação das ondas com a pressão é resultado do fechamento das fraturas, defeitos e contatos de grãos, o que torna o arcabouço da rocha mecanicamente mais resistente. Se a pressão aumentar muito pode ocorrer o fraturamento dos grãos e o colapso dos poros.

3. AMOSTRAS ESTUDADAS

Para a realização deste trabalho, foram utilizadas 15 amostras de rochas sedimentares paleozoicas provenientes de afloramentos da região Centro-Oeste dos Estados Unidos, sendo 5 amostras de arenito Berea, 5 amostras de calcário Indiana e 5 amostras de dolomito Silurian.

O arenito Berea é proveniente da região centro-norte de Ohio, nas vizinhanças de Berea, próximo a Cleveland. O arenito faz parte da sequência sedimentar Bedford-Berea, que se estende da Pennsylvania a Kentucky, e é de idade Mississippiana. A visão tradicionalmente aceita é de que o arenito Berea foi depositado nos distritos de Ashland e Medina, em canais fluviais que corriam para o sul (Hillebrand & Coogan, 1984). Apresenta composição de 93.13% de Sílica (SiO₂), 3,86% de Alumina (Al₂O₃) e baixas concentrações de óxidos de ferro, cálcio e magnésio (www.bereasandstonecores.com).

As amostras de carbonato (5 amostras de calcário e 5 amostras de dolomito) são provenientes dos estados Indiana e Illinois, respectivamente. Há 335 Ma, a maioria do que é agora o EUA foi coberto por mares rasos com águas quentes. A deposição de esqueletos e fragmentos de animais que viviam neste ambiente proporcionou a acumulação de carbonatos no fundo do mar e, posteriormente, a formação da faixa de carbonatos presentes nessa região. O calcário Indiana aflora ao longo de uma banda arqueada irregular e fina no centro-sul Indiana (mais especificamente nos condados de Monroe e Lawrence) (Perry et al., 1954) e apresenta 97,3% de carbonato de cálcio (CaCO₃), 0,4% de carbonato de magnésio (MgCO₃), 1,7% de sílica (SiO₂), 0,5% de alumina (Al₂O₃) e 0,1% de outros óxidos (Brooklyn College-Academic Home Page). O dolomito Silurian é composto por 97,5% de dolomita (carbonato duplo de cálcio e magnésio - CaMg(CO₃)₂), presença de Si, Al, K e Na indicado presença de argilas e / ou feldspato (Mohamed et al., 2011).

A Tabela 3 traz informações acerca da identificação das amostras, o tipo de rocha, a idade, a formação e origem das mesmas.

Rocha	Amostras (Identificação)	Formação	Origem	Idade
Berea Sandstones (arenito)	BRS001 BRS002 BRS003 BRS016 BRS017	Bedford	Ohio, EUA	Entre o Mississipiano e Devoniano Superior
Indiana Limestone (calcário)	IL011 IL012 IL013 IL016 IL017	Salem	Indiana, EUA	Mississipiano Médio (335-340 Ma)
Silurian Dolomite (dolomito)	SD005 SD006 SD007 SD010 SD011	Racine	Illinois, EUA (Thornton Pedreira)	Siluriano- Devoniano

Tabela 3: Informações sobre as amostras. Fontes: Archilla et al., 2012; Churcher et al., 1991; obsis. unb,isgs.illinois, ebeltz.net e US Geological Survey

Todas as amostras foram cortadas, a partir de testemunhos dos afloramentos, em plugues de formas cilíndricas com dimensões de aproximadamente 4,5 cm de comprimento e 3,75 cm de diâmetro, em uma máquina apropriada para corte de rochas (figura 12)

Figura 12: Preparação das amostras para os ensaios

A figura 13 apresenta dois plugues do arenito Berea testados neste trabalho. Os plugues das demais amostras seguem o mesmo padrão.

Figura 13: Foto de dois plugues das amostras de arenito Berea

4. METODOLOGIA

Neste capítulo, será feita uma descrição das metodologias experimentais utilizadas para a investigação das propriedades elásticas das amostras em estudo.

4.1. MEDIDAS DAS PROPRIEDADES ELÁSTICAS

Os ensaios para determinação das propriedades elásticas foram realizados no Laboratório de Física de Rochas do CENPES. O sistema de medida das velocidades da onda P (V_P) e ondas S (V_{S1} e V_{S2}) consiste basicamente de uma parte hidráulica e uma parte eletrônica (Figura 14).

Figura 14: Foto do sistema de medida de velocidades V_P , V_{S1} e V_{S2}

A parte hidráulica é composta por uma bomba hidráulica e por um recipiente de medida, um vaso hidráulico. O vaso é equipado com cabeçotes metálicos de medida, que fazem a ligação com a parte eletrônica do sistema. Dentro dos cabeçotes, há três transdutores piezelétricos de material cerâmico para a emissão e recepção do sinal elétrico, conforme ilustração da Figura 15.

Figura 15: Esquema ilustrativo da parte hidráulica do sistema de medidas de velocidades elásticas em amostras de rocha. Fonte: Adaptado de Abreu (2010).

Na Figura 15, um fato importante a ser observado é que o vaso hidráulico também é equipado com uma resistência elétrica, o que permite o aquecimento da amostra para a realização de ensaios a temperaturas controladas, entretanto, neste trabalho as medidas foram realizadas à temperatura ambiente.

A parte eletrônica, por sua vez, é composta por um gerador de pulsos e um amplificador de potência que fornecem um sinal bem conhecido para o transdutor piezelétrico de material cerâmico localizado no cabeçote da parte hidráulica. O transdutor transforma o sinal eletrônico em uma vibração mecânica, compressional ou cisalhante, conforme escolha do operador do sistema. A amostra é então colocada dentro da célula (cabeçote de medida) e entre a amostra e os transdutores é colocada uma folha de chumbo para facilitar o acoplamento e distribuir uniformemente as ondas acústicas em toda a amostra. Após percorrer a amostra de rocha, a vibração mecânica é recebida por outro transdutor, que a converte em sinal elétrico. Este sinal elétrico é amplificado e, em seguida, analisado por um osciloscópio. As formas de ondas registradas no osciloscópio são armazenadas em computador para análises posteriores (Figura 16).

Figura 16: Esquema ilustrativo da parte eletrônica do sistema de medidas de velocidades elásticas em amostras de rocha. Fonte: Adaptado de Abreu (2010)

Os três transdutores cilíndricos que se encontram no cabeçote geram, separadamente, uma onda compressional (V_P) e duas ondas cisalhantes ortogonalmente polarizadas ($V_{S1} e V_{S2}$), identificadas na Figura 17, respectivamente, como *P-wave*, *S1-wave* e *S2-wave*. A frequência natural desses transdutores é de 700 kHz. A Figura 18 ilustra a propagação das ondas elásticas.

Figura 17: Detalhes dos transdutores do cabeçote.

Figura 18: Ilustração da propagação das ondas elástica. As ondas P acarretam perturbações na mesma direção de propagação da onda (eixo z). As ondas S provocam perturbações perpendiculares (eixos x e y) à direção de propagação. Adaptado de Archilha et al. (2012)

4.1.1. PROCEDIMENTO PARA MEDIDAS DA VELOCIDADE

No laboratório, as velocidades são determinadas medindo-se o tempo de trânsito do pulso elástico de alta frequência transmitido através da amostra. A visualização do sinal no osciloscópio indica o tempo de trânsito da onda pelo sistema com a amostra. As velocidades de propagação das ondas elásticas nas rochas são calculadas dividindo-se o comprimento da amostra (Δx) pelo tempo (Δt) efetivamente gasto pela onda para percorrer a amostra:

$$V = \frac{\Delta x}{\Delta t} \tag{27}$$

O tempo efetivamente gasto pela onda para percorrer apenas a amostra (Δt) é igual ao tempo observado no osciloscópio diminuído do tempo do sistema ou tempo de atraso t_o ($\Delta t = t - t_o$), onde t_o é o tempo gasto pelo sinal na parte eletrônica e nos cabeçotes metálicos quando não há nenhuma amostra inserida no sistema, ou seja, é o tempo intrínseco ao sistema (Figura 19).

Figura 19: Comparação dos tempos de propagação das ondas P e S no sistema sem amostras (onda em vermelho) com o sistema com amostra (onda em azul). Fonte: Material interno do Laboratório Física de Rochas/ Cenpes

O método mais tradicional para a estimativa do tempo de trânsito é a leitura do tempo de um determinado evento, como a primeira quebra ou o máximo do primeiro pico. Na literatura, a estimativa do tempo de trânsito pela leitura do tempo da primeira quebra, ou seja, do tempo da primeira energia oscilatória que atravessa a amostra é o método mais reportado. Entretanto, nem sempre a primeira quebra é um evento de fácil identificação, devido à presença de ruídos ou outras interferências no sinal, principalmente em amostras heterogêneas. Por isso, neste trabalho foi feita a estimativa do tempo de trânsito utilizando como referência o tempo do primeiro pico após a primeira quebra para onda P e o tempo do primeiro vale após a primeira quebra para a onda S. Esta estimativa fornece resultados mais precisos. Considerando as incertezas associadas às medidas de tempo e comprimento, a precisão na determinação de velocidades é de 1% a 2% (Morschbacher et al., 2010).

4.1.2. MEDIDAS PETROFÍSICAS

As medidas petrofísicas realizadas para este trabalho foram a porosidade das amostras e a densidade de grãos. Estes ensaios foram realizados pelo Laboratório de Petrofísica Básica do Cenpes (Petrobras). As medidas foram feitas utilizando-se um porosímetro à gás Hélio. Este equipamento realiza medidas do volume de grãos (volume da matriz) das amostras a partir da variação de pressão numa câmara contendo gás Hélio. Inicialmente a câmara contendo Hélio é pressurizada em 200 psi, enquanto a amostra é colocada em outra câmara à pressão atmosférica. Em seguida, abre-se uma válvula que liga as duas câmaras e ocorre uma expansão do gás da câmara pressurizada para a câmara que inicialmente estava à pressão atmosférica. A pressão na 1ª Câmara diminui até se estabilizar em uma nova pressão inferior a pressão inicial. Através da Lei de Boyle é possível determinar o volume de grãos e a partir deste, a porosidade e a densidade mineral (Archilha et al., 2012).

A Tabela 4 apresenta os dados de porosidade e densidade de grãos obtidos experimentalmente. Por estes resultados, espera-se que as amostras de arenito Berea sejam as mais uniformes, pois apresentam valores de porosidade muito próximos.

Rocha	RochaAmostrasPorosidade(Identificação)Efetiva (%)		Massa Específica dos Grãos (g/cm³)
	BRS001	18,8	2,65
Berea	BRS002	18,7	2,65
Sandstones	BRS003	18,5	2,66
(arenito)	BRS016	18,9	2,66
	BRS017	19	2,65
	IL011	17,2	2,67
Indiana	IL012	17	2,68
Limestone	IL013	15,8	2,69
(calcário)	IL016	15,2	2,69
	IL017	13,7	2,68
	SD005	11	2,72
Silurian	SD006	16,1	2,81
Dolomite	SD007	14,2	2,82
(dolomito)	SD010	16,7	2,83
	SD011	18,2	2,83

Tabela 4: Dados de Porosidade e Massa Específica obtidos no Laboratório do Cenpes

5. RESULTADOS

Inicialmente, foi feita a calibração do sistema utilizando um plugue de alumínio como referência para verificação da acurácia e reprodutibilidade das medidas e qualidade das formas de onda. Antes de iniciar a medida das amostras, foi feita a medida do tempo do sistema a pressão de 5000 psi, conforme Figura 20.

Figura 20: Tempo do sistema medido para as ondas P, S1 e S2

Conforme representado na tabela 5, os tempos do sistema para as ondas P, S1 e S2 foram respectivamente: 13,99 us, 25,18 us e 25,30 us.

Medidas do tempo do sistema (em us)			
TsisP	13,99		
TsisS1	25,18		
TsisS2	25,30		

Tabela 5: Tempo do sistema

As velocidades de propagação das ondas elásticas nas amostras foram medidas a pressões de confinamento variando de 500 até 5000 psi (com incremento constante de 500 psi) e a pressões variando de 5000 até 500 psi (também com decréscimo constante de 500 psi).

5.1. RESULTADOS DAS MEDIDAS DE ONDA P, ONDA S1 E ONDA S2

Conforme descrito na seção 2, foram coletados cinco plugues de cada litologia, de 1,5 polegadas cada, em pontos diferentes dos testemunhos. Em seguida, procedeu-se a medição das mesmas, conforme a metodologia descrita no Capítulo 4.

A Tabela 6 indica os valores de tempo de trânsito das ondas obtidos para a amostra BRS001 e as velocidades de propagação das ondas P, S1 e S2 calculadas utilizando a Equação 27. O tempo de trânsito das ondas foi medido com o aumento da pressão de 500 em 500 psi até 5000 psi, e com a posterior diminuição da pressão de 5000 psi até 5000 psi.

Tabela 6: Tempo de propagação das ondas P, S	1 e S2 e respectivas	velocidades calculadas	para a amostra
	BRS001		

Amostra: BRS001						
Massa:		103,3 g				
Comprime	ento:	43,9 mm				
		Onda P	Onda S1	Onda S2		
Tempo do	sistema (us):	13,99	25,18	25,3		
	Tempo	de trânsito	(us)	Velocida	de de prop	oagação (m/s)
	Р	S1	S2	VP	VS1	VS2
500	28,22	47,20	47,38	3085	1994	1988
1000	27,18	45,60	45,80	3328	2150	2141
1500	26,58	44,64	44,82	3487	2256	2249
2000	26,30	44,10	44,30	3566	2320	2311
2500	26,08	43,68	43,90	3631	2373	2360
3000	25,92	43,35	43,65	3680	2416	2392
3500	25,80	43,15	43,45	3717	2443	2419
4000	25,72	43,00	43,30	3743	2464	2439
4500	25,66	42,86	43,20	3762	2483	2453
5000	25,62	42,74	43,10	3775	2500	2466
5000	25,62	42,74	43,10	3775	2500	2466
4500	25,64	42,80	43,15	3768	2491	2459
4000	25,68	42,90	43,20	3755	2477	2453
3500	25,74	42,95	43,32	3736	2470	2436
3000	25,82	43,14	43,45	3711	2444	2419
2500	25,92	43,30	43,60	3680	2423	2399
2000	26,04	43,58	43,85	3643	2386	2367
1500	26,24	43,98	44,20	3584	2335	2323
1000	26,58	44,66	44,87	3487	2254	2243
500	27,36	46,10	46,35	3283	2098	2086

A partir dos dados de tempo de trânsito coletados e com o auxílio do programa Matlab (descrito no apêndice A), foi possível plotar as formas de onda obtidas para as amostras em estudo. A Figura 21 ilustra um exemplo para cada forma de ondas P, S1 e S2 obtidas para uma amostra de arenito Berea em particular (BRS001). O apêndice B traz os valores de tempo de trânsito medidos e as velocidades calculadas para todas as amostras.

É possível observar que para pressões mais baixas, a amplitude do sinal registrado diminui e também a definição da primeira onda de chegada torna-se menos precisa, principalmente para as ondas cisalhantes. Por este motivo, sempre que possível neste trabalho, as medidas calculadas a partir de V_P e V_S utilizarão os dados obtidos à pressão de 5000 psi.

Figura 21: Exemplo de registro das ondas compressionais e cisalhantes com a pressão para a amostra BRS001. A escala horizontal indica a medida feita sequencialmente com o aumento da pressão de 500 psi a 5000 psi, e o decréscimo da pressão de 5000 psi a 500 psi. Já nesta figura é possível notar o fenômeno de histerese que será abordado no item 5.1.2

5.1.1. RELAÇÃO ENTRE A VELOCIDADE DE PROPAGAÇÃO DA ONDA S1 COM A ONDA S2

Conforme descrito no Capítulo 4, durante este trabalho foram registradas, para cada amostra, duas ondas cisalhantes polarizadas ortogonalmente entre si (chamadas aqui de S1 e S2). Nesta etapa foi feita a medida do grau de anisotropia das amostras, utilizando os valores obtidos para as duas ondas S. Ordenando a V_S mais rápida em relação à V_S mais lenta para cada amostra à pressão de 5000 psi, é possível calcular o grau de anisotropia a partir da equação abaixo:

$$\frac{VS_{rápida} - VS_{lenta}}{VS_{média}} \times 100$$
(28)

A Figura 22 representa o diagrama de dispersão dos dados medidos entre a onda S mais rápida contra a onda S mais lenta para os três tipos de amostras à pressão de 5000 psi. Observando os dados reportados na Tabela 7, nota-se que, de um modo geral, o grau de anisotropia entre os dados foi menor que 2% (da ordem do erro admitido para tais medidas), indicando assim que as amostras podem ser consideradas isotrópicas.

Relação VS rápida x VS lenta

Figura 22: Diagrama de dispersão da velocidade da onda S rápida contra a onda S lenta à pressão de 5000 psi, para as amostras de arenito (círculos amarelos), carbonato (triângulos azuis) e dolomito (quadrados verdes). A linha vermelha contínua representa a identidade e a tracejada uma diferença de 2%

Amostras	VS rápida	VS lenta	Grau de
Amostras	(m/s)	(m/s)	anisotropia (%)
BRS001	2500	2466	1,36
BRS002	2521	2510	0,44
BRS003	2502	2496	0,24
BRS016	2504	2462	1,70
BRS017	2562	2507	2,17
IL011	2486	2408	3,20
IL012	2451	2441	0,41
IL013	2662	2609	2,01
IL016	2622	2577	1,73
IL017	2408	2385	0,96
SD005	3192	3139	1,67
SD006	3267	3252	0,45
SD007	3405	3387	0,53
SD010	3534	3518	0,45
SD011	3201	3133	2,17

Tabela 7: Tabela com os dados de ondas cisalhantes medidos a pressão de 5000 psi. Apenas três pontosapresentam grau de anisotropia acima de 2% e podem ser considerados "outliers"

Portanto, para as correlações feitas nos próximos capítulos, será utilizada a média entre as velocidades das ondas S1 e S2, visto que é possível considerar as rochas como isotrópicas.

5.1.2. VARIAÇÃO DAS VELOCIDADES DAS ONDAS ELÁSTICAS COM A VARIAÇÃO DA PRESSÃO

Em acordo com a teoria (capítulo 2, item 2.3.4.), observa-se um aumento da velocidade de propagação das ondas com o aumento da pressão. A Figura 23 ilustra a tendência das velocidades compressionais e cisalhantes com a variação da pressão, obtida para uma amostra de cada litologia.

Figura 23: Relação entre a velocidade de propagação das ondas P, S1 e S2 com a variação da pressão para uma amostra de Arenito Berea (BRS001), uma amostra do Calcário Indiana (IL012) e uma amostra do Dolomito Siluriano (SD006). A cor azul representa as velocidades da onda P, a cor verde a velocidade da onda S₁ e a cor laranja a velocidade da onda S₂. Os pontos marcados por quadrados representam a medida da velocidade com o aumento da pressão e os pontos marcados por círculos representam a medida da velocidade com o decréscimo da pressão.

Para todas as amostras medidas foram observadas tendências semelhantes. Os dados das relações V_P , V_{S1} e V_{S2} com a variação da pressão para todas as amostras encontra-se disponível no Anexo B.

É interessante notar o fenômeno da histerese presente na rocha arenítica, pois ao medir a velocidade das ondas com o aumento da pressão obteve-se valores diferentes dos medidos com o decréscimo da pressão para os mesmos pontos. Ou seja, após a rocha já ter sido submetida a um aumento de pressão, o comportamento das propriedades elásticas sofrem leve alteração e, com isso, a velocidade da onda P medida a 3500 psi, por exemplo, durante o aumento da pressão é diferente da velocidade obtida para a onda P submetida aos mesmos 3500 psi durante o alívio de tensão. Nas rochas carbonáticas e dolomíticas, o fenômeno de histerese é observado em uma intensidade bem menor.

Embora não tenha ocorrido uma coincidência perfeita dos valores de velocidades nos ciclos de subida e alívio de tensão, os efeitos de histerese podem ser considerados de segunda ordem, de um modo geral, pois não foram obtidos resultados muito acentuados.

5.1.3. RELAÇÃO VP/Vs X VP

A Tabela 8 ilustra a relação $V_P x$ Vs obtidas para o grupo de amostras em estudo à pressão de 5000 psi. Conforme previsto na teoria, é possível discriminar o tipo de litologia das rochas com base nos resultados de V_P/Vs encontrados (Figura 24). Mesmo sendo este estudo realizado em poucas amostras, foi possível encontrar valores de razão V_P/Vs muito próximos aos previstos por Pickett (1963), em média 1,52 para o arenito, 1,75 para o carbonato e 1,77 para o dolomito).

	Amostra	Vp	V _s média	V _p /V _s
	BRS001	3775	2483	1,53
	BRS002	3816	2516	1,52
BEREA	BRS003	3853	2499	1,54
	BRS016	3785	2483	1,53
	BRS017	3847	2535	1,53
	IL011	4280	2447	1,76
	IL012	4247	2446	1,73
INDIANA	IL013	4641	2635	1,75
	IL016	4567	2600	1,75
	IL017	4144	2397	1,72
	SD005	5696	3165	1,81
	SD006	5702	3259	1,75
SILURIAN	SD007	6025	3396	1,77
	SD010	6255	3526	1,77
	SD011	5524	3167	1,75

Tabela 8: Relação VpxVs obtidas para o grupo de amostras em estudo à pressão de 5000 psi

Figura 24: Diagrama das relações Vp/Vs X Vp obtidas para as amostras de Arenito Berea (círculos amarelos), Calcário Indiana(triângulos azuis) e Dolomito Silurian (quadrados verdes)

5.1.4. RELAÇÃO V_P X V_S

Na sísmica, utiliza-se muito uma técnica de exploração e desenvolvimento de reservatórios chamada AVO (Amplitude versus Offset, ou Amplitude versus distância à fonte). Esta técnica usa dados sísmicos não empilhados, ou famílias CDP, que são traços sísmicos referentes a um mesmo ponto em subsuperfície. O comportamento de AVO

depende, entre outros parâmetros, das velocidades das ondas cisalhantes, mas na sísmica tem-se no máximo uma estimativa de V_P. Sendo assim, é grande o interesse em se prever o valor de V_S conhecendo-se V_P. A Figura 25 ilustra o diagrama de dispersão das velocidades de propagação das ondas cisalhantes em função das velocidades das ondas compressionais para as amostras secas, à pressão efetiva de 5000 psi.

Figura 25: Diagrama das relações VpxVs obtidas para as amostras de Arenito Berea (em amarelo), Calcário Indiana (em azul) e Dolomito Silurian (em verde), à pressão efetiva de 5000psi. Para o cálculo do R2 do arenito foi necessário excluir um ponto outliers (em destaque)

Este diagrama mostrado na Figura 25, é importante para avaliar a coerência dos resultados para fins de controle de qualidade, e revela uma boa correlação entre as velocidades, com coeficiente de determinação R^2 de 0,975 para o arenito, 0,9429 para o carbonato e 0,9961 para o dolomito.

5.1.5. RELAÇÃO DA VELOCIDADE DE PROPAGAÇÃO DA ONDA P COM A POROSIDADE

Para verificar a relação da velocidade da onda P com a porosidade seria necessário realizar mais medidas, entretanto, é possível notar (Figura 26 e Tabela 9) que os dados referentes ao arenito Berea encontram-se menos dispersos devido ao fato desta rocha apresentar pouca variação de porosidade. Para o carbonato Indiana e o dolomito Silurian, os dados estão mais espalhados, mas de um modo geral, é possível perceber uma tendência à diminuição do valor da velocidade de propagação da onda compressional com o aumento da porosidade.

Figura 26: Diagrama da relação Vp com a porosidade obtida para as amostras de Arenito Berea (círculos amarelos), Calcário Indiana (triângulos azuis) e Dolomito Silurian (quadrados verdes). Os pontos mais afastados, referentes às amostras SD005 e IL017, podem ser considerados outliers. Possivelmente houve interferência nas medidas devido ao fato de ter ocorrido contato acidental destas amostras com o óleo do vaso hidráulico durante as medições.

	Amostras	V _P (m/s)	Porosidade (%)
	BRS001	3775	18,8
	BRS002	3816	18,7
BEREA	BRS003	3853	18,5
	BRS016	3785	18,9
	BRS017	3847	19,0
	IL011	4280	17,2
	IL012	4247	17,0
INDIANA	IL013	4641	15,8
	IL016	4567	15,2
	IL017	4144	13,7
	SD005	5696	11,0
	SD006	5702	16,1
SILURIAN	SD007	6025	14,2
	SD010	6255	16,7
	SD011	5524	18,2

Tabela 9: Relação Vp com a porosidade obtida para o grupo de amostras em estudo à pressão de 5000 psi

5.1.6. Relação da velocidade de propagação das ondas elásticas com a substituição de fluidos

A fim de observar a influência da saturação da rocha na propagação das ondas compressionais e cisalhantes, foi feita a saturação de três amostras com água, uma de cada litologia, e em seguida, foram realizadas novas medidas de V_P e V_S , conforme a metodologia descrita no Capítulo 4. As amostras escolhidas foram BRS002, SD006 e IL013.

Em paralelo foi realizada também uma estimativa de Vp e Vs para as rochas saturadas a partir da equação de Gassmann (Equação 22) apresentada no Capítulo 2. Para a utilização deste modelo foram adotadas alguns valores tabelados de módulo de compressão do mineral (conforme Tabela 2) e para o módulo de compressão do fluido, no caso da água, considerou-se o valor de 2,25 GPa (Mavko et al., 1998). As tabelas com os valores calculados encontram-se disponíveis no apêndice C. A Figura 27 indica os resultados obtidos para V_P e V_S para rocha seca e para rocha saturada, comparados à previsão feita pelo modelo de Gassmann.

Figura 27: Velocidades das amostras BRS002 (Arenito Berea), IL013 (Carbonato Indiana) SD006 (Dolomito Silurian) a seco e saturadas com água, comparadas à previsão de Gassmann

Nota-se que a presença de fluidos nos espaços porosos afeta as propriedades elásticas das rochas, e consequentemente, vai afetar a assinatura sísmica da mesma. Nas amostras de arenito, que apresentam maior porosidade, o efeito é ainda mais acentuado. De um modo geral, as velocidades compressionais nas rochas saturadas com água são maiores do que as velocidades compressionais nas rochas secas. Para as velocidades cisalhantes observa-se o contrário, a adição de fluido reduz a velocidade cisalhante, pois o módulo de cisalhamento permanece inalterado enquanto a densidade aumenta. A previsão das velocidades P e S feita pelas equações de Gassmann apresentou resultados

satisfatórios, com dados de precisão elevados e erros menores que 3% (tabela 10), mesmo deixando de atender ao pressuposto da teoria sobre uso baixas de frequências para realização das medidas (em laboratório trabalha-se com altas frequências).

 Tabela 10: Resultados de Vp e Vs obtidos experimentalmente para as rochas saturadas e calculados pela

		BRSC	002 saturada com	água									
Pressões	VP medida (km/s)	VP calculada (km/s)	Erro (VP) (%)	VS medida (km/s)	VS calculada	Erro (VS) (%)							
500,00	3,45	3,33	3,40	1,86	1,87	0,61							
1000,00	3,57	3,53	1,28	2,01	2,04	1,54							
1500,00	3,65	3,65	0,00	2,10	2,16	2,93							
2000,00	3,69	3,72	0,70	2,14	2,23	3,97							
2500,00	3,72	3,78	1,68	2,17	2,29	5,52							
3000,00	3,75	3,82	1,62	2,21	2,33	5,05							
3500,00	3,79	3,85	1,58	2,25	2,37	5,39							
4000,00	3,82	3,87	1,29	2,28	2,38	4,65							
4500,00	3,85	3,89	1,09	2,30	2,40	4,41							
5000,00	3,86	3,91	1,06	2,31	2,41	4,54							
		ILO:	13 saturada com á	gua									
Pressões	VP medida (km/s)	VP calculada (km/s)	Erro (VP) (%)	VS medida (km/s)	VS calculada	Erro (VS) (%)							
500,00	4,46	4,52	1,51	2,34	2,44	4,37							
1000,00	4,56	4,61	1,05	2,39	2,48	3,98							
1500,00	4,62	4,65	0,70	2,42	2,51	3,56							
2000,00	4,65	4,67	0,35	2,44	2,52	3,29							
2500,00	4,67	4,68	0,18	2,45	2,53	3,14							
3000,00	4,69	4,70	0,15	2,46	2,54	3,16							
3500,00	4,70	4,71	0,17	2,47	2,54	2,99							
4000,00	4,72	4,71	0,14	2,47	2,55	2,89							
4500,00	4,72	4,72	0,08	2,48	2,55	2,89							
5000,00	4,73	4,72	0,19	2,48	2,55	2,78							
		SD0	06 saturada com á	igua									
Pressões	VP medida (km/s)	VP calculada (km/s)	Erro (VP) (%)	VS medida (km/s)	VS calculada	Erro (VS) (%)							
500,00	5,34	5,38	1,51	2,81	3,00	4,37							
1000,00	5,46	5,49	1,05	2,92	3,07	3,98							
1500,00	5,51	5,54	0,59	2,96	3,10	3,60							
2000,00	5,55	5,58	0,13	2,98	3,11	3,21							
2500,00	5,57	5,59	0,33	2,99	3,12	2,83							
3000,00	5,59	5,61	0,79	3,00	3,13	2,44							
3500,00	5,61	5,64	1,26	3,01	3,14	2,06							
4000,00	5,62	5,64	1,72	3,02	3,15	1,67							
4500,00	5,62	5,65	2,18	3,02	3,15	1,29							
5000,00	5,64	5,65	2,64	3,03	3,16	0,90							

equação de Gassmann

6. CONCLUSÃO

Os resultados obtidos a partir das medições experimentais foram bem sucedidos na caracterização das amostras estudadas. Foram determinadas as propriedades petrofísicas principais para este estudo (porosidade e densidade) e as velocidades das ondas elásticas para cada tipo de rocha submetida a diferentes pressões.

Com estes resultados, foi possível estudar as correlações entre os tipos de litologia e as velocidades de propagação das ondas elásticas, bem como verificar a influência de fatores como porosidade, pressão e presença de fluido de saturação no comportamento elástico da rocha (diagramas apresentados no capítulo 5).

De um modo geral, pode-se afirmar que a velocidade da onda compressional está associada de forma quase linear com a velocidade da onda de cisalhamento para as rochas sedimentares secas. O conhecimento das velocidades compressivas e cisalhantes, juntamente a porosidade e densidade da rocha é suficiente para a determinação dos parâmetros elásticos de meios isotrópicos apresentados neste trabalho.

A estimativa de velocidades compressionais e cisalhantes para rochas saturadas a partir de dados medidos para rocha seca utilizando as equações de Gassmann foram muito próximas dos valores determinados experimentalmente (como indicado na Figura 27), o que assegura a eficácia desta metodologia para o estudo do efeito da substituição de fluidos no comportamento sísmico de reservatórios. Isto indica também a importância dos resultados empíricos na verificação da validade de teorias e modelos propostos.

Com isto, fica evidente que determinar as propriedades físicas das rochas a partir de medidas feitas em laboratório é uma etapa fundamental para o estabelecimento de relações entre essas propriedades e a assinatura sísmica da rocha, e consequentemente, tem aplicações muito importantes para o aprimoramento do método sísmico. O entendimento das relações existentes entre as propriedades das rochas e seu comportamento sísmico é determinante para melhorar a interpretação de medidas geofísicas.

7. REFERÊNCIAS BIBLIOGRÁFICAS

Abreu, E.S., "Modelagens Teóricas e Empíricas Aplicadas à Investigação da Conexão entre as Propriedades Petrofísicas e Elásticas em Rochas Carbonáticas", Dissertação de Mestrado, Unicamp, 2010.

Archilha, N.; Ceia M.; Misságia R.; Neto, I.L. Comparação entre as constantes elásticas estimadas pelas velocidades e pela composição mineral de rochas carbonáticas. V Simpósio Brasileiro de Geofísica, novembro/2012.

Arns, C.H., "The influence of morphology on physical properties of reservoir rocks", PhD thesis, The University of New South Wales, 2002.

Bourbié, T.; Coussy, O.; Zinszner, B. Acoustics of porous media, Institut Français du Pétrole Publications, Houston, TX: Gulf Publishing Company, 1987.

Castagna, J; Batzle, M.; Eastwood, R. et al. Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, v. 50, n.4, p.571-581, 1985.

Churcher, P.L.; French, P.R.; Shaw, J.C.; Schramm, L.L. ; "Rock Properties of Berea Sandstone, Baker Dolomite, and Indiana Limestone". SPE (Society of Petroleum Engineers). SPE 21044, 1991.

Dillon, L.D.; "A contribuição da informação elástica no processo de caracterização de reservatórios", Tese de Doutorado, UFRJ, julho/2001.

Dillon, L.D., e Vasquez, G.F.; Física de rochas: fundamentos e aplicações; Petrobras, 1^a edição, 2000.

Hillebrand, L.B.; Coogan, A.H.; Berea Sandstone reservoirs in Ashland and Medina Counties, Ohio.; Conference: AAPG Eastern Section meeting, Pittsburgh, PA, USA, Journal Volume: 68:12; Outubro, 1984

Gassmann, F. Elastic waves through a packing of spheres, Geophysics, 16, 673-685 pp, 1951.

Gassmann, F., "Über die elastizität poroöser medien", Vier. Der Natur. Gesellschaf in Zürich, 96:1-23, 1951.

Kearey, P.; Brooks, M.; Hill, I. Geofísica de Exploração. São Paulo - Oficina de textos, 2009.

Mavko, G., Mukerji, T., Dvorkin, J.;The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media: Cambridge University Press, Cambridge, New York, USA, 329 pp, 1998.

Mohamed, I.M.;He, J.; Nasr-El-Din, H.A. Carbon Dioxide Sequestration in Dolomite Rock. IPTC (International Petroleum Technology Conference). 2011.

Morschbacher, M.; Vasquez, G.; Justen J. "Metodologia de Estimativa das Velocidades Sísmicas em Ensaios de Laboratório", IV SimBGF (Simpósio Brasileiro de Geofísica), Novembro, 2010.

Perry, T.G.; Smith, N.M.; Wayne, W.J. "Salem Limestone And Associated Formations In South-Central Indiana". Geological Survey. Indiana Department of Conservation. Field Conference Guidebook n°7, 1954. Disponível em:

https://scholarworks.iu.edu/dspace/bitstream/handle/2022/258/GB07.pdf?sequence=1

Pickett, G. R.. Acoustic character logs and their application in formation evaluation, Journal of Petroleum Technology, v.15, p.659-667, June 1963.

Rafavich, F.; C. H. St. C. Kendall, and T. P. Todd. The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophysics, vol. 49, no. Io (october 1984); p. 1622 1636, 16 figs., 6 tables.

Raymer, L.L., Hunt, E.R., and Gardner, J.S., "An improved sonic transit time to porosity transform", In Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium, page Paper P, 1980.

Santos, R. Apostila de Aquisição Sísmica – Módulo II (Constantes Elásticas e Ondas P e S). Agosto, 2012.

Schon, J.H.; Physical properties of rocks: fundamentals and principles of petrophysics. Vol.18 (3). 583 pp, 1996.

Smith, T.M.; Sondergeldz, C.H.; Rai, C.S. Gassmann fluid substitutions : A tutorial. Geophysics, vol. 68, número 2, p. 430-440, Março-Abril/2003;

Soares, J.A. Um Estudo da estabilidade Mecânica de Poços a partir de Perfis Geofísicos em Formações Pouco Consolidadas. Tese de Mestrado, UFPA, 1992.

Takahashi, I.; Quantifying Information and Uncertainty of Rock Property Estimation from Seismic Data. Dissertação de mestrado, Stanford University, 2000.

Vasquez, G.F. ;Justen, J. ; Bacelar, C.; Nunes C.; Live and Let Gassmann Work. SBGf -Sociedade Brasileira de Geofísica. Novembro/2007.

Wyllie, M. R. J; Gregory, A. R.; Gardner, G. H. F.; Elastic wave velocities in heterogeneous porous media, geophysics, v.21, p.41-70, 1956.

www.obsis.unb.br (Observatório sismológico)

http://www.bereasandstonecores.com/

http://academic.brooklyn.cuny.edu/geology/powell/613webpage/NYCbuilding /Indiana Limestone/IndianaLimestone.htm)

http://www.isgs.illinois.edu/maps-data-pub/cook-atlas/ss.shtml

http://www.usgs.gov/

http://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=ILS;0

http://ebeltz.net/fieldtrips/tq-ft.html

APÊNDICE A – PROGRAMA MATLAB PARA GERAR A FORMA DE ONDA

Neste apêndice será apresentado o código do programa utilizado para gerar as formas de ondas da Figura 21. Este programa foi gentilmente cedido pelo Geofísico Márcio José Morschbacher (Petrobras).

```
clc
clear
amostra2 = 'BRS002';
tipo=['P ';'S1';'S2'];
tempos = load('tempos_BRS002.txt');
nm = 57;
sequencia =
['001';'002';'003';'004';'005';'006';'007';'008';'009';'010';...
'011';'012';'013';'014';'015';'016';'017';'018';'019';'020';...
'021';'022';'023';'024';'025';'026';'027';'028';'029';'030';...
'031';'032';'033';'034';'035';'036';'037';'038';'039';'040';...
'041';'042';'043';'044';'045';'046';'047';'048';'049';'050';...
             '051';'052';'053';'054';'055';'056';'057'];
arquivo=[];
figure(1)
for j = 1:3
dados = [];
  for i = j:3:nm
  curva = strcat(sequencia(i,:),'.csv');
  arquivo = importa_csv_agilent12bits(amostra2,curva);
 dados =[dados arquivo];
 arguivo=[];
 end;
    % save (strcat(amostra2,'/',amostra2,'-',tipo(j,:),'-
','.txt'),'dados','-ascii');
%dados=organiza_dados(dados);
dados=interpola_dados(dados); % interpola os dados usando amostragem
0.01 us e coloca traços lado a lado com uma unica escala de tempo
   % save (strcat(amostra2,'/',amostra2,'-',tipo(j,:),'-
','.txt'),'dados','-ascii');
   dt = (dados(2,1) - dados(1,1)) * 1e6;
  nc=min(size(dados));
   %subplot(1,3,j)
   figure(j)
   f = figure('Position', [62 258 1129 420]);
  seisplot(dados(:,[2:nc]),dados(1,1)*1e6,dt,1,1) % plota os registros
do osciloscopio lado-a-lado tipo sismograma
         _ no loop abaixo são plotados as picagens de tempos de chegada
  8
da onda
  hold on
   for k=1:nm/3
```

```
p = [tempos(k,1)-0.2; tempos(k,1)+0.2]; % tamanho do tracinho
t = [tempos(k,j+1); tempos(k,j+1)];
```

```
plot(p,t,'k-','LineWidth',2)
end
hold off
%_______
xlim([0.1 19.9])
ylabel('Tempo(us)')
xlabel('Registro')
title(strcat(amostra2,'-',tipo(j,:)))
dados=[];
end
```

C1.1- ROTINA PARA IMPORTAR CSV AGILENT

```
function arquivo=importa_csv_agilent12bits(amostra,curva)
```

```
arquivo=[];
t=[];
a=[];
fid = fopen(strcat(amostra,'/',curva));
for 1 = 1:4
   lixo = fgetl(fid);
    end;
    while 1;
        tline = fqetl(fid);
       if ~ischar(tline), break;end;
       p = find(tline == ',');
      t = str2num(tline(1:p-1));
       a = str2num(tline(p+1:max(size(tline))));
      arquivo = [arquivo; t, a];
    end;
  fclose (fid);
end
```

C1.2- ROTINA PARA INTERPOLAR DADOS

```
function dados_interp=interpola_dados(todo);
%todo = dados;
c=1;
for i=1:2:min(size(todo))-1
  todo_t(:,c) = todo(:,i);
  todo_amp(:,c) = todo(:,i+1);
 c=c+1;
end
%tmax=max(todo_t);
tmax=min(todo_t(max(size(todo)),:));
%tmin = min(todo_t);
tmin = max(max(todo_t(1,:)));
tt = [tmin:le-8:tmax]';
%todo = dados;
dados_interp = [tt];
for i=1:2:min(size(todo))-1
amp = spline(todo(:,i),todo(:,i+1),tt);
dados_interp = [dados_interp amp];
end
```

						L	ados Are	nito Berea							
	Tempo d sistema:	lo	TsisP	13,99	us	TsisS1	25,18	us	TsisS2	25,3	us				
		BRS-001			BRS-002			BRS-003			BRS-016			BRS-017	
	m	103,3	g	m	103,17	g	m	105,04	g	m	103,36	g	m	104,42	g
	L	43,9	mm	L	43,62	mm	L	44,43	mm	L	43,87	mm	L	44,43	mm
Pressão	Tempo	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)
(psi)	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2
500	28,22	47,20	47,38	28,17	47,35	47,80	28,02	47,28	47,34	28,54	47,32	47,74	28,58	47,02	47,46
1000	27,18	45,60	45,80	27,06	45,55	45,90	27,06	45,72	45,80	27,34	45,60	45,98	27,52	45,56	45,94
1500	26,58	44,64	44,82	26,46	44,50	44,75	26,56	44,84	44,90	26,76	44,70	45,08	26,85	44,60	44,96
2000	26,30	44,10	44,30	26,16	43,90	44,14	26,26	44,16	44,23	26,39	44,08	44,48	26,45	44,00	44,39
2500	26,08	43,68	43,90	25,90	43,45	43,65	26,05	43,94	44,00	26,13	43,64	44,02	26,17	43,56	43,97
3000	25,92	43,35	43,65	25,76	43,16	43,30	25,89	43,64	43,70	25,96	43,32	43,72	25,94	43,16	43,62
3500	25,80	43,15	43,45	25,62	42,85	42,95	25,73	43,38	43,44	25,83	43,12	43,52	25,79	42,92	43,40
4000	25,72	43,00	43,30	25,54	42,75	42,85	25,66	43,24	43,28	25,74	42,96	43,36	25,70	42,78	43,26
4500	25,66	42,86	43,20	25,48	42,66	42,70	25,57	43,10	43,17	25,66	42,82	43,24	25,61	42,62	43,10
5000	25,62	42,74	43,10	25,42	42,56	42,60	25,52	42,98	43,06	25,58	42,70	43,12	25,54	42,52	43,02
5000	25,62	42,74	43,10	25,42	42,56	42,60	25,52	42,98	43,06	25,58	42,70	43,12	25,54	42,52	43,02
4500	25,64	42,80	43,15	25,46	42,62	42,65	25,56	43,05	43,14	25,61	42,72	43,15	25,57	42,56	43,06
4000	25,68	42,90	43,20	25,52	42,70	42,75	25,62	43,15	43,23	25,67	42,82	43,24	25,62	42,62	43,14
3500	25,74	42,95	43,32	25,58	42,80	42,90	25,68	43,26	43,33	25,73	42,92	43,35	25,68	42,72	43,24
3000	25,82	43,14	43,45	25,66	42,95	43,05	25,76	43,38	43,47	25,81	43,06	43,49	25,74	42,82	43,32
2500	25,92	43,30	43,60	25,76	43,15	43,25	25,85	43,56	43,64	25,92	43,24	44,42	25,84	42,98	43,48

43,78

43,14

44,80

44,16

43,88

44,22

44,87

46,25

26,08

26,30

26,68

27,54

43,50

43,88

44,56

46,00

43,94

44,34

45,06

46,56

25,98

26,17

26,57

27,34

43,20

43,56

44,22

45,42

43,70

44,03

44,68

45,92

APÊNDICE B – RESULTADOS DAS MEDIDAS DO TEMPO DE TRÂNSITO DO PULSO ELÉTRICO

Dadas Aranita D

2000

1500

1000

500

26,04

26,24

26,58

27,36

43,58

43,98

44,66

46,10

43,85

44,20

44,87

46,35

25,90

26,10

26,46

27,36

43,40

43,85

44,50

46,10

43,55

43,95

44,75

46,35

25,99

26,16

26,49

27,17

Dados Carbonato Indiana

	Tempo o	do													
	sistema:		TsisP	13,99	us	TsisS1	25,18	us	TsisS2	25,3	us				
		IL011			IL012			IL013			IL016			IL017	
	m	106,83	g	m	105,86	g	m	109,04	g	m	105,66	g	m	106,76	g
	L	44,3	mm	L	43,62	mm	L	44,14	mm	L	43,71	mm	L	44,46	mm
Pressão	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsit	to (us)	Temp	o de trânsi	to (us)
(psi)	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2
500	25,18	44,20	44,90	24,92	44,10	43,80	24,04	42,84	42,64	24,10	42,74	42,62	25,42	44,80	44,67
1000	24,86	43,65	44,35	24,68	43,65	43,45	23,79	42,54	42,34	23,84	42,42	42,30	25,08	44,28	44,20
1500	24,66	43,35	44,15	24,56	43,40	43,30	23,69	42,38	42,18	23,74	42,28	42,21	24,93	44,04	44,00
2000	24,54	43,30	43,95	24,42	43,25	43,20	23,63	42,26	42,06	23,68	42,26	42,12	24,86	43,93	43,90
2500	24,50	43,15	43,90	24,40	43,20	43,15	23,60	42,22	42,00	23,63	42,20	42,06	24,82	43,88	43,86
3000	24,44	43,10	43,80	24,34	43,15	43,15	23,55	42,16	41,94	23,61	42,18	42,03	24,80	43,84	43,81
3500	24,40	43,04	43,80	24,30	43,10	43,10	23,52	42,14	41,94	23,60	42,16	42,01	24,76	43,82	43,80
4000	24,40	43,00	43,80	24,28	43,05	43,10	23,52	42,12	41,90	23,58	42,16	42,01	24,76	43,82	43,79
4500	24,36	43,00	43,75	24,28	43,05	43,10	23,50	42,10	41,88	23,58	42,16	42,00	24,75	43,82	43,78
5000	24,34	43,00	43,70	24,26	43,05	43,10	23,50	42,10	41,88	23,56	42,14	41,97	24,72	43,82	43,76
5000	24,34	43,00	43,70	24,26	43,05	43,10	23,50	42,10	41,88	23,56	42,14	41,97	24,72	43,82	43,76
4500	24,36	43,00	43,75	24,28	43,05	43,10	23,51	42,10	41,88	23,57	42,14	41,98	24,74	43,84	43,78
4000	24,40	43,00	43,75	24,32	43,15	43,15	23,52	42,12	41,90	23,58	42,14	42,00	24,78	43,88	43,81
3500	24,44	43,05	43,80	24,38	43,15	43,20	23,52	42,12	41,92	23,59	42,16	42,01	24,82	43,92	43,87
3000	24,48	43,15	43,90	24,42	43,28	43,25	23,54	42,14	41,94	23,61	42,18	42,03	24,87	44,00	43,92
2500	24,52	43,15	43,95	24,46	43,35	43,25	23,55	42,16	41,96	23,63	42,20	42,07	24,93	44,08	43,99
2000	24,60	43,25	44,10	24,56	43,45	43,30	23,58	42,22	42,00	23,66	42,22	42,10	25,01	44,16	44,09
1500	24,70	43,50	44,25	24,64	43,55	43,30	23,62	42,26	42,06	23,70	42,26	42,15	25,10	44,26	44,20
1000	24,86	43,80	44,40	24,76	43,65	43,35	23,68	42,36	42,20	23,76	42,32	42,24	25,24	44,46	44,38
500	25,18	44,60	46,90	24,92	43,85	43,70	23,86	42,58	42,40	23,96	42,54	42,44	25,54	44,84	44,68

						Da		into Shunai	1						
	Tempo d	0		40.00		T : 64	05.40		T : 60						
	sistema:		TsisP	13,99	us	TsisS1	25,18	us	TsisS2	25,3	us				
		SD005			SD006			SD007			SD010			SD011	
	m	112,5	g	m	110,73	g	m	115,75	g	m	131,26	g	m	112,62	g
	L	43,63	mm	L	43,51	mm	L	44,16	mm	L	45,1	mm	L	43,86	mm
Pressão	Tempo	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsi	to (us)	Temp	o de trânsit	o (us)	Temp	o de trânsit	o (us)
(psi)	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2	Р	S1	S2
500	21,79	39,27	39,51	22,08	39,16	39,42	21,68	38,80	39,02	21,55	38,38	38,42	22,34	39,45	40,25
1000	21,78	39,27	39,47	21,88	38,86	39,05	21,54	38,60	38,72	21,44	38,24	38,27	22,20	39,30	39,70
1500	21,75	39,20	39,40	21,80	38,76	38,94	21,48	38,48	38,58	21,38	38,18	38,23	22,12	39,20	39,60
2000	21,72	39,15	39,32	21,74	38,66	38,88	21,44	38,40	38,50	21,33	38,12	38,17	22,08	39,12	39,54
2500	21,70	39,00	39,30	21,72	38,64	38,82	21,42	38,36	38,44	21,29	38,09	38,14	22,02	39,04	39,50
3000	21,68	38,95	39,26	21,68	38,58	38,78	21,38	38,28	38,38	21,27	38,06	38,12	22,00	38,98	39,42
3500	21,67	38,90	39,24	21,64	38,54	38,74	21,36	38,28	38,36	21,25	38,04	38,10	21,98	38,94	39,40
4000	21,66	38,90	39,22	21,64	38,54	38,72	21,35	38,24	38,34	21,24	38,04	38,09	21,96	38,94	39,38
4500	21,65	38,90	39,20	21,62	38,50	38,70	21,34	38,24	38,30	21,22	38,00	38,06	21,94	38,90	39,34
5000	21,65	38,85	39,20	21,62	38,50	38,68	21,32	38,22	38,27	21,20	38,00	38,06	21,93	38,88	39,30
													1		
5000	21,65	38,85	39,20	21,62	38 <i>,</i> 50	38,68	21,32	38,22	38,27	21,20	38,00	38,06	21,93	38,88	39,30
4500	21,64	38,85	39,22	21,62	38,50	38,70	21,32	38,22	38,28	21,20	38,00	38,06	21,93	38,88	39,32
4000	21,64	38,85	39,22	21,62	38,50	38,70	21,34	38,22	38,30	21,21	38,00	38,06	21,93	38,90	39,32
3500	21,65	38,90	39,22	21,62	38 <i>,</i> 50	38,70	21,34	38,22	38,30	21,22	38,00	38,07	21,93	38,90	39,32
3000	21,66	38,90	39,22	21,63	38 <i>,</i> 50	38,71	21,34	38,24	38,32	21,23	38,00	38,08	21,94	38,92	39,36
2500	21,66	38,95	39,22	21,63	38,50	38,71	21,35	38,24	38,33	21,23	37,98	38,08	21,95	38,94	39,38
2000	21,67	38,95	39,22	21,64	38,52	38,72	21,35	38,26	38,34	21,25	37,94	38,02	21,96	38,96	39,42
1500	21,68	39,00	39,22	21,65	38,55	38,75	21,35	38,26	38,38	21,24	37,94	38,01	21,99	39,02	39,48
1000	21,69	39,15	39,22	21,68	38,60	38,78	21,36	38,32	38,43	21,25	38,02	38,00	22,03	39,08	39,54
500	21,70	39,15	39,24	21,74	38,78	38,92	21,38	38,42	38,54	21,28	38,18	38,08	22,10	39,10	40,35

Dados Dolomito Silurian

		BRS001			BRS002			BRS003	·		BRS004			BRS005	
							Aume	nto da pr	essão				-		
Pressão (psi)	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2
500	3085	1994	1988	3076	1968	1939	3167	2010	2016	3015	1981	1955	3045	2034	2005
1000	3328	2150	2141	3337	2141	2117	3399	2163	2167	3286	2148	2121	3284	2180	2153
1500	3487	2256	2249	3498	2258	2243	3535	2260	2267	3435	2247	2218	3455	2288	2260
2000	3566	2320	2311	3584	2330	2315	3621	2341	2347	3538	2321	2287	3566	2361	2327
2500	3631	2373	2360	3662	2388	2377	3684	2368	2376	3614	2376	2343	3648	2417	2380
3000	3680	2416	2392	3706	2426	2423	3734	2407	2415	3665	2418	2382	3718	2471	2425
3500	3717	2443	2419	3751	2469	2471	3784	2441	2449	3705	2445	2408	3765	2505	2455
4000	3743	2464	2439	3777	2483	2485	3807	2460	2471	3734	2467	2429	3794	2524	2474
4500	3762	2483	2453	3796	2495	2507	3837	2479	2486	3759	2487	2445	3824	2548	2496
5000	3775	2500	2466	3816	2510	2521	3853	2496	2502	3785	2504	2462	3847	2562	2507
				-			Decrés	cimo da p	ressão	-			-		
5000	3775	2500	2466	3816	2510	2521	3853	2496	2502	3785	2504	2462	3847	2562	2507
4500	3768	2491	2459	3803	2501	2514	3840	2486	2490	3775	2501	2458	3837	2556	2502
4000	3755	2477	2453	3783	2490	2500	3820	2472	2478	3756	2487	2445	3820	2548	2490
3500	3736	2470	2436	3764	2476	2478	3801	2457	2464	3737	2473	2430	3801	2533	2477
3000	3711	2444	2419	3738	2455	2457	3775	2441	2445	3712	2454	2412	3781	2519	2466
2500	3680	2423	2399	3706	2427	2430	3746	2417	2423	3677	2429	2294	3749	2496	2444
2000	3643	2386	2367	3662	2394	2390	3703	2389	2391	3629	2395	2354	3706	2466	2415
1500	3584	2335	2323	3602	2336	2339	3651	2474	2348	3564	2346	2304	3648	2417	2372
1000	3487	2254	2243	3498	2258	2243	3554	2265	2270	3457	2264	2220	3532	2334	2293
500	3283	2098	2086	3263	2085	2072	3371	2341	2121	3238	2107	2063	3328	2195	2155

APÊNDICE B – VELOCIDADES CALCULADAS A PARTIR DOS DADOS EXPERIMENTAIS

Resultados calculados para as velocidades de propagação a partir da equação 27 (em m/s) – Arenito Berea

	IL011 IL012							IL013			IL016			IL017	
							Aume	nto da pr	essão						
Pressão (psi)	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2
500	3959	2329	2260	3991	2305	2358	4392	2499	2546	4323	2489	2524	3890	2266	2295
1000	4075	2398	2325	4080	2362	2403	4504	2543	2590	4438	2535	2571	4009	2328	2352
1500	4152	2438	2350	4127	2394	2423	4551	2566	2615	4483	2556	2585	4064	2357	2378
2000	4199	2445	2375	4182	2414	2437	4579	2584	2634	4511	2559	2599	4090	2371	2390
2500	4215	2465	2382	4190	2421	2444	4593	2590	2643	4534	2568	2608	4105	2378	2395
3000	4239	2472	2395	4214	2427	2444	4617	2600	2653	4544	2571	2613	4113	2383	2402
3500	4256	2480	2395	4231	2434	2451	4632	2603	2653	4548	2574	2616	4128	2385	2403
4000	4256	2486	2395	4239	2441	2451	4632	2606	2659	4558	2574	2616	4128	2385	2405
4500	4272	2486	2401	4239	2441	2451	4641	2609	2662	4558	2574	2617	4132	2385	2406
5000	4280	2486	2408	4247	2441	2451	4641	2609	2662	4567	2577	2622	4144	2385	2408
							Decrés	cimo da p	oressão						
5000	4280	2486	2408	4247	2441	2451	4641	2609	2662	4567	2577	2622	4144	2385	2408
4500	4272	2486	2401	4239	2441	2451	4637	2609	2662	4563	2577	2621	4136	2383	2406
4000	4256	2486	2401	4223	2427	2444	4632	2606	2659	4558	2577	2617	4120	2378	2402
3500	4239	2479	2395	4198	2427	2437	4632	2606	2656	4553	2574	2616	4105	2372	2394
3000	4223	2465	2382	4182	2410	2430	4622	2603	2653	4544	2571	2613	4086	2362	2388
2500	4207	2465	2375	4166	2401	2430	4617	2600	2649	4534	2568	2606	4064	2352	2379
2000	4175	2452	2356	4127	2388	2423	4603	2590	2643	4520	2565	2602	4034	2342	2366
1500	4136	2418	2338	4096	2375	2423	4584	2584	2634	4502	2559	2594	4002	2330	2352
1000	4075	2379	2319	4050	2362	2417	4555	2569	2612	4474	2550	2580	3952	2306	2330
500	3959	2281	2051	3991	2336	2371	4472	2537	2581	4384	2518	2550	3849	2261	2294

Resultado para as velocidades de propagação calculadas a apartir da equação 27 (em m/s) - Carbonato Indiana

		SD005 SD						SD007			SD010			SD011	
							Aume	nto da pr	essão						
Pressão (psi)	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2	VP	VS1	VS2
500	5594	3097	3070	5378	3112	3081	5743	3242	3219	5966	3417	3438	5253	3074	2934
1000	5601	3097	3079	5515	3181	3164	5849	3291	3291	6054	3453	3477	5342	3106	3046
1500	5622	3112	3094	5571	3204	3190	5896	3320	3325	6103	3469	3488	5395	3128	3067
2000	5644	3123	3112	5614	3228	3204	5928	3340	3345	6144	3485	3504	5422	3146	3080
2500	5659	3157	3116	5629	3233	3218	5943	3351	3361	6178	3493	3512	5462	3165	3089
3000	5674	3168	3125	5658	3247	3228	5976	3371	3376	6195	3502	3518	5476	3178	3106
3500	5681	3180	3130	5688	3257	3237	5992	3371	3381	6212	3507	3523	5489	3188	3111
4000	5688	3180	3134	5688	3257	3242	6000	3381	3387	6221	3507	3526	5503	3188	3115
4500	5696	3180	3139	5702	3267	3247	6008	3381	3397	6238	3518	3534	5517	3197	3124
5000	5696	3192	3139	5702	3267	3252	6025	3387	3405	6255	3518	3534	5524	3201	3133
							Decrés	cimo da p	oressão						
5000	5696	3192	3139	5702	3267	3252	6025	3387	3405	6255	3518	3534	5524	3201	3133
4500	5703	3192	3134	5702	3267	3247	6025	3387	3402	6255	3518	3534	5524	3201	3128
4000	5703	3192	3134	5702	3267	3247	6008	3387	3397	6247	3518	3534	5524	3197	3128
3500	5696	3180	3134	5702	3267	3247	6008	3387	3397	6238	3518	3532	5524	3197	3128
3000	5688	3180	3134	5695	3267	3245	6008	3381	3392	6229	3518	3529	5517	3192	3119
2500	5688	3168	3134	5695	3267	3245	6000	3381	3389	6229	3523	3529	5510	3188	3115
2000	5681	3168	3134	5688	3262	3242	6000	3376	3387	6212	3534	3546	5503	3183	3106
1500	5674	3157	3134	5680	3254	3235	6000	3376	3376	6221	3534	3548	5483	3169	3093
1000	5666	3123	3134	5658	3242	3228	5992	3361	3363	6212	3512	3551	5455	3155	3080
500	5659	3123	3130	5614	3199	3195	5976	3335	3335	6187	3469	3529	5408	3151	2914

Resultado para as velocidades de propagação calculadas a apartir da equação 27 (em m/s) - Dolomito Silurian

								Resultado	is das amo	JSLIAS SAL	urauas							
	Tem	po do sist	ema:	TsisP	13,99	us	TsisS1	25,18	us	TsisS2	25,3	us						
		I	BRS-002 S	aturada					IL013 Sa	turada					SD006 Sa	turada		
			massa = 1	.03,17 g					massa = 1	09,04 g				I	massa= 1	10,73 g		
			L = 43,6	7 mm					L = 44,0	8 mm					L = 43,12	8 mm		
	Tempo	o de trâns	ito (us)	Velo	cidade (m/s)	Tempo	de trânsi	to (us)	Veloc	cidade (r	n/s)	Tempo	de trâns	ito (us)	Velo	cidade (m/s)
Pressão (psi)	Р	S1	S2	VP	VS1	VS2	Р	S1	S2	VP	VS1	VS2	Р	S1	S2	VP	VS1	VS2
500	26,64	48,22	49,18	3452	1895	1829	23,88	44,50	43,72	4416	2260	2371	22,08	40,80	40,40	5398	2796	2892
1000	26,22	46,72	47,18	3571	2027	1996	23,65	44,14	43,30	4521	2303	2426	21,90	40,40	39,66	5521	2869	3041
1500	25,96	45,85	46,28	3648	2113	2082	23,54	43,92	43,03	4573	2330	2463	21,83	40,22	39,48	5570	2904	3080
2000	25,82	45,44	45,80	3691	2155	2130	23,46	43,74	42,86	4611	2353	2487	21,77	40,14	39,38	5613	2919	3102
2500	25,74	45,26	45,55	3717	2175	2157	23,42	43,66	42,78	4631	2363	2498	21,74	40,04	39,32	5635	2939	3115
3000	25,62	44,90	45,03	3755	2215	2213	23,38	43,60	42,72	4651	2371	2507	21,71	40,02	39,27	5657	2943	3126
3500	25,50	44,64	44,69	3794	2244	2252	23,36	43,56	42,68	4661	2376	2513	21,69	39,96	39,23	5671	2955	3135
4000	25,41	44,40	44,44	3824	2272	2282	23,33	43,50	42,64	4676	2384	2518	21,68	39,94	39,20	5679	2959	3142
4500	25,34	44,23	44,26	3848	2292	2303	23,32	43,50	42,60	4681	2384	2524	21,67	39,92	39,17	5686	2963	3149
5000	25,29	44,16	44,16	3865	2301	2315	23,31	43,46	42,60	4686	2389	2524	21,65	39,90	39,14	5701	2967	3155
5000	25,29	44,16	44,16	3865	2301	2315	23,31	43,46	42,60	4686	2389	2524	21,65	39,90	39,14	5701	2967	3155
4500	25,30	44,16	44,19	3861	2301	2312	23,31	43,48	42,62	4686	2386	2521	21,65	39,90	39,15	5701	2967	3153
4000	25,33	44,24	44,27	3851	2291	2302	23,33	43,50	42,64	4676	2384	2518	21,65	39,90	39,16	5701	2967	3151
3500	25,37	44,32	44,37	3837	2282	2290	23,34	43,52	42,66	4671	2381	2516	21,66	39,90	39,17	5694	2967	3149
3000	25,42	44,42	44,49	3821	2270	2276	23,35	43,56	42,69	4666	2376	2511	21,66	39,90	39,19	5694	2967	3144
2500	25,49	44,58	44,67	3797	2251	2255	23,37	43,56	42,73	4656	2376	2505	21,67	39,92	39,21	5686	2963	3139
2000	25,58	44,84	44,97	3768	2221	2220	23,40	43,62	42,77	4641	2368	2500	21,68	39,96	39,24	5679	2955	3133
1500	25,71	45,14	45,40	3726	2188	2173	23,44	43,70	42,82	4621	2358	2493	21,70	39,40	39,26	5664	3071	3128
1000	25,91	45,66	46,12	3664	2132	2098	23 <i>,</i> 50	43,82	42,95	4592	2343	2474	21,73	40,10	39,38	5642	2927	3102
500	26,39	47,18	47,80	3522	1985	1941	23,62	44,10	43,24	4535	2308	2434	21,79	40,25	39,54	5599	2898	3067

Resultados das amostras saturadas

Arenito	Velo	cidade (k	km/s) -BF	RSOO2 Seca		Da	ados medid	os ou tabelad	dos			Me	edidas cal	culadas	
Pressão (psi)	VP	VS1	VS2	VS média	ρgrao (g/cm³)	ф	K matriz (GPa)	K fluido (água) GPa	ρ fluido (g/cm³)	μmatriz	ρ seca (g/cm³)	ρ sat (g/cm³)	K seca (GPa)	K sat (eq.de Gasmann) (GPa)	μseca = µsat
500	3,08	1,97	1,94	1,95	2,65	0,187	37	2,25	1,0	44	2,15	2,34	9,43	15,08	8,22
1000	3,34	2,14	2,12	2,13	2,65	0,187	37	2,25	1,0	44	2,15	2,34	10,97	16,07	9,77
1500	3,50	2,26	2,24	2,25	2,65	0,187	37	2,25	1,0	44	2,15	2,34	11,82	16,62	10,91
2000	3,58	2,33	2,32	2,32	2,65	0,187	37	2,25	1,0	44	2,15	2,34	12,18	16,86	11,62
2500	3,66	2,39	2,38	2,38	2,65	0,187	37	2,25	1,0	44	2,15	2,34	12,60	17,13	12,23
3000	3,71	2,43	2,42	2,42	2,65	0,187	37	2,25	1,0	44	2,15	2,34	12,70	17,20	12,67
3500	3,75	2,47	2,47	2,47	2,65	0,187	37	2,25	1,0	44	2,15	2,34	12,78	17,26	13,14
4000	3,78	2,48	2,49	2,48	2,65	0,187	37	2,25	1,0	44	2,15	2,34	13,00	17,40	13,29
4500	3,80	2,50	2,51	2,50	2,65	0,187	37	2,25	1,0	44	2,15	2,34	13,08	17,46	13,48
5000	3,82	2,51	2,52	2,52	2,65	0,187	37	2,25	1,0	44	2,15	2,34	13,20	17,53	13,63

$\Delta \hat{p} \hat{r} \hat{n} \hat{n} \hat{c} \hat{r} \hat{c} - 1$	β έςιμ τλρός ρλς	VELOCIDADES	CALCULADAS	PELA FOUA	CÃODE	CASMANN
IN ENDICE C - I		VELOCIDADES	CALCULADAS	I ELA EQUA	VUDE	OTOMATI

		Dado	os medid	OS	Dados calculados por Gasmann					
	Velocio	dade (km	/s) -BRS(002 Saturada	Velocidade de propagação (km/s)					
Pressão (psi)	VP	VS1	VS2 VS média		VP	VS média	Erro (VP)	Erro (VS)		
500	3,452	1,895	1,829	1,862	3,335	1,87	-3,40	0,61		
1000	3,571	2,027	1,996	2,012	3,525	2,04	-1,28	1,54		
1500	3,648	2,113	2,082	2,097	3,648	2,16	0,00	2,93		
2000	3,691	2,155	2,130	2,143	3,717	2,23	0,70	3,97		
2500	3,717	2,175	2,157	2,166	3,779	2,29	1,68	5,52		
3000	3,755	2,215	2,213	2,214	3,816	2,33	1,62	5,05		
3500	3,794	2,244	2,252	2,248	3,854	2,37	1,58	5,39		
4000	3,824	2,272	2,282	2,277	3,873	2,38	1,29	4,65		
4500	3,848	2,292	2,303	2,298	3,890	2,40	1,09	4,41		
5000	3,865	2,301	2,315	2,308	3,905	2,41	1,06	4,54		

Carbonato	Velo	ocidade ([km/s) -II	_013 Seca	Dados medidos ou tabelados						Medidas calculadas				
Pressão (psi)	VP	VS1	VS2	VS média	ρgrao (g/cm³)	φ	K matriz (GPa)	K fluido (água) GPa	ρ fluido (g/cm³)	μ matriz	ρ seca (g/cm³)	ρ sat (g/cm³)	K seca (GPa)	K sat (eq.de Gasmann) (GPa)	μseca = µsat
500	4,39	2,50	2,55	2,52	2,71	0,158	76	2,25	1,0	32	2,28	2,44	24,66	30,58	14,52
1000	4,50	2,54	2,59	2,57	2,71	0,158	76	2,25	1,0	32	2,28	2,44	26,25	31,83	15,03
1500	4,55	2,57	2,61	2,59	2,71	0,158	76	2,25	1,0	32	2,28	2,44	26,83	32,29	15,31
2000	4,58	2,58	2,63	2,61	2,71	0,158	76	2,25	1,0	32	2,28	2,44	27,13	32,53	15,53
2500	4,59	2,59	2,64	2,62	2,71	0,158	76	2,25	1,0	32	2,28	2,44	27,31	32,67	15,62
3000	4,62	2,60	2,65	2,63	2,71	0,158	76	2,25	1,0	32	2,28	2,44	27,66	32,95	15,74
3500	4,63	2,60	2,65	2,63	2,71	0,158	76	2,25	1,0	32	2,28	2,44	27,94	33,17	15,75
4000	4,63	2,61	2,66	2,63	2,71	0,158	76	2,25	1,0	32	2,28	2,44	27,87	33,11	15,81
4500	4,64	2,61	2,66	2,64	2,71	0,158	76	2,25	1,0	32	2,28	2,44	28,02	33,24	15,85
5000	4,64	2,61	2,66	2,64	2,71	0,158	76	2,25	1,0	32	2,28	2,44	28,02	33,24	15,85

	Voloci	Dado	s medid	0S 12 Saturada	Dados calculados por Gasmann					
	veloci	luaue (Ki	11/5) -ILU.	15 Saturaua	veio	ciuaue ue	propagaçac) (KIII/S)		
Pressão (psi)	VP	VS1	VS2	VS média	VP	VS média	Erro (VP)	Erro (VS)		
500	4,457	2,282	2,393	2,337	4,524	2,44	1,51	4,37		
1000	4,563	2,325	2,449	2,387	4,611	2,48	1,05	3,98		
1500	4,616	2,352	2,486	2,419	4,648	2,51	0,70	3,56		
2000	4,655	2,375	2,510	2,443	4,671	2,52	0,35	3,29		
2500	4,674	2,385	2,522	2,454	4,683	2,53	0,18	3,14		
3000	4,694	2,393	2,530	2,462	4,702	2,54	0,15	3,16		
3500	4,704	2,398	2,536	2,467	4,712	2,54	0,17	2,99		
4000	4,719	2,406	2,542	2,474	4,713	2,55	-0,14	2,89		
4500	4,725	2,406	2,548	2,477	4,721	2,55	-0,08	2,89		
5000	4,730	2,411	2,548	2,480	4,721	2,55	-0,19	2,78		

Dolomito	Velo	cidade (l	km/s) - S	D006 Seca	Dados medidos ou tabelados						Medidas calculadas				
Pressão (psi)	VP	VS1	VS2	VS média	ρgrao (g/cm³)	φ	K matriz (GPa)	K fluido (água) GPa	ρ fluido (g/cm³)	μ matriz	ρ seca (g/cm³)	ρ sat (g/cm³)	K seca (GPa)	K sat (eq.de Gasmann) (GPa)	μseca = µsat
500	5,38	3,11	3,08	3,10	2,87	0,161	95	2,25	1,0	45	2,41	2,57	38,86	43,45	23,09
1000	5,51	3,18	3,16	3,17	2,87	0,161	95	2,25	1,0	45	2,41	2,57	40,91	45,19	24,23
1500	5,57	3,20	3,19	3,20	2,87	0,161	95	2,25	1,0	45	2,41	2,57	41,92	46,04	24,61
2000	5,61	3,23	3,20	3,22	2,87	0,161	95	2,25	1,0	45	2,41	2,57	42,69	46,70	24,90
2500	5,63	3,23	3,22	3,23	2,87	0,161	95	2,25	1,0	45	2,41	2,57	42,89	46,87	25,05
3000	5,66	3,25	3,23	3,24	2,87	0,161	95	2,25	1,0	45	2,41	2,57	43,44	47,33	25,24
3500	5,69	3,26	3,24	3,25	2,87	0,161	95	2,25	1,0	45	2,41	2,57	44,04	47,85	25,39
4000	5,69	3,26	3,24	3,25	2,87	0,161	95	2,25	1,0	45	2,41	2,57	43,99	47,81	25,43
4500	5,70	3,27	3,25	3,26	2,87	0,161	95	2,25	1,0	45	2,41	2,57	44,25	48,03	25,54
5000	5,70	3,27	3,25	3,26	2,87	0,161	95	2,25	1,0	45	2,41	2,57	44,20	47,99	25,58

		Dado	os medid	OS	Dados calculados por Gasmann						
	Veloci	dade (km	n/s) - SDC	06 Saturada	Velocidade de propagação (km/s)						
Pressão (psi)	VP	VS1	VS2	VS média	VP	VS média	Erro (VP)	Erro (VS)			
500	5,337	2,764	2,860	2,812	5,376	3,00	0,72	6,62			
1000	5,459	2,837	3,007	2,922	5,493	3,07	0,62	5,11			
1500	5,508	2,871	3,045	2,958	5,540	3,10	0,59	4,63			
2000	5,550	2,886	3,067	2,977	5,577	3,11	0,49	4,60			
2500	5,572	2,906	3,080	2,993	5,590	3,12	0,33	4,34			
3000	5,593	2,910	3,091	3,000	5,615	3,13	0,38	4,47			
3500	5,608	2,922	3,100	3,011	5,640	3,14	0,57	4,42			
4000	5,615	2,925	3,106	3,016	5,640	3,15	0,44	4,31			
4500	5,622	2,929	3,113	3,021	5,653	3,15	0,54	4,36			
5000	5,637	2,933	3,120	3,027	5,653	3,16	0,28	4,25			